首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transferability of bacterial resistance to tigecycline, the ‘last-resort’ antibiotic, is an emerging challenge of global health concern. The plasmid-borne tet(X) that encodes a flavin-dependent monooxygenase represents a new mechanism for tigecycline resistance. Natural source for an ongoing family of Tet(X) resistance determinants is poorly understood. Here, we report the discovery of 26 new variants [tet(X18) to tet(X44)] from the poultry pathogen Riemerella anatipestifer, which expands extensively the current Tet(X) family. R. anatipestifer appears as a natural reservoir for tet(X), of which the chromosome harbours varied copies of tet(X) progenitors. Despite that an inactive ancestor rarely occurs, the action and mechanism of Tet(X2/4)-P, a putative Tet(X) progenitor, was comprehensively characterized, giving an intermediate level of tigecycline resistance. The potential pattern of Tet(X) dissemination from ducks to other animals and humans was raised, in the viewpoint of ecological niches. Therefore, this finding defines a large pool of natural sources for Tet(X) tigecycline resistance, heightening the need of efficient approaches to manage the inter-species transmission of tet(X) resistance determinants.  相似文献   

2.
Polymyxin resistance is conferred by MCR-1 (mobile colistin resistance 1)-induced lipopolysaccharide (LPS) modification of G bacteria. However, the peptide MSI-1 exerts potent antimicrobial activity against mcr-1-carrying bacteria. To further investigate the potential role of MCR-1 in improving bacterial virulence and facilitating immune evasion, and the immunomodulatory effect of peptide MSI-1, we first explored outer membrane vesicle (OMV) alterations of mcr-1-carrying bacteria in the presence and absence of sub-MIC MSI-1, and host immune activation during bacterial infection and OMV stimulation. Our results demonstrated that LPS remodelling induced by MCR-1 negatively affected OMV formation and protein cargo by E. coli. In addition, MCR-1 diminished LPS-stimulated pyroptosis but facilitated mitochondrial dysfunction, further aggravating apoptosis in macrophages induced by OMVs of E. coli. Similarly, TLR4-mediated NF-κB activation was markedly alleviated once LPS was modified by MCR-1. However, peptide MSI-1 at the sub-MIC level inhibited the expression of MCR-1, further partly rescuing OMV alteration and attenuation of immune responses in the presence of MCR-1 during both infection and OMV stimulation, which can be exploited for anti-infective therapy.  相似文献   

3.
MCR-4 and MCR-8 are two recently identified members of an ongoing MCR family of colistin resistance. Although that aquatic reservoir for MCR-4 is proposed, the origin and mechanism of MCR-8 is poorly understood. Here we report a previously unrecognized non-mobile colistin resistance enzyme, termed NMCR-2, originating from the plant pathogen Kosakonia pseudosacchari. NMCR-2 (551aa) gives 67.3% identity to MCR-8 (565aa). NMCR-2 is placed as a progenitor/ancestor for MCR-8 in phylogeny of MCR members. Genetic study reveals that nmcr-2 is comparable to mcr-8 in the ability of producing phenotypic colistin resistance. Biochemical analyses determine that these two enzymes catalyse the transfer of PEA from the donor PE lipid substrate to the recipient lipid A molecule by a putative ‘ping-pong’ trade-off. Further experiment of protein engineering demonstrates that the two motifs (TM region and catalytic domain) of NMCR-2 are functionally exchangeable with that of MCR-8, rather than MCR-1. Physiological impacts of nmcr-2 and/or mcr-8 are detected in Escherichia coli, featuring with fitness cost. Evidently, the action and mechanism of NMCR-2 is analogous to that of MCR-8. Therefore, our finding underlines that NMCR-2 might be a possible progenitor of MCR-8.  相似文献   

4.
《Genomics》2023,115(2):110572
P1 -like phage-plasmids (PPs) are important gene vehicles in isolated pathogens. In this study, we conducted genome-wide and cross-species analysis of antimicrobial resistance genes (ARGs) from 35 ARG-positive P1-like PPs. LS-BSR analysis reveal that P1-like PPs had in common 7 highly variable regions and carried 48 different ARG subtypes. The most prevalent gene groups were the colistin resistance gene mcr-1 and a class 1 integron. Analysis of the flanking sequences of mcr-1 indicated an “IS30-mcr-1-ORF-IS30” as the core cluster. In particular, we found an mcr-1- and blaCTX-M-55-coharboring large fusion P1-like PP. Also, tet(X4) was detected and flanking sequences indicated tet(X4)-bearing cluster can formed a larger size fusion plasmid mediated a wider spread via IS26 hotspots. Overall, this study demonstrated that P1-like PPs can not only mobilize a large number of ARGs in variable regions but also form larger hybrid P1-like PPs that would increase their ability to spread antimicrobial resistance.  相似文献   

5.
Colistin is recognized as a last-resort treatment option against multi-drug resistant bacteria including carbapenem-resistant Enterobacteriaceae (CRE). However, the plasmid-mediated colistin-resistance gene mcr-1 has been reported globally resulting in an increase of colistin-resistant bacteria. A quick and accurate method for determining the pathogen resistance of colistin is therefore crucial in the clinic. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a potential tool forto be applied for antimicrobial susceptibility testing. We compared the growth of Escherichia coli strains in the presence or absence of colistin. Automated analyses of the spectra were performed with a prototype software tool written with package R. Three mcr-1-positive and six mcr-1-negative E. coli were used for establishing the model to obtain the optimal incubation time, the breakpoint concentration of colistin and cut-off of the relative growth (RG) value. The distinction between susceptible and resistant strains was already noticeable after 2 h of incubation. The best separation between the susceptible and resistant strains was achieved at a concentration of 4 µg ml-1 and a relative growth cut-off value of 0.6. Application of the model for the analysis of 128 E. coli isolates, a sensitivity of 97.4% and a specificity of 88.2% were achieved compared with colistin MIC results. The rapid MALDI-TOF MS-based method approach is simple to set-up, uses a short incubation time, and had excellent outcomes with respect to sensitivity and specificity for colistin sensitivity testing in Escherichia coli.  相似文献   

6.
7.
The transferability of the tetracycline (TC) resistance gene tet(M) from marine bacteria to human enteric bacteria was examined by a filter-mating method. Vibrio spp., Lactococcus garvieae, Bacillus spp., Lactobacillus sp., and Paenibacillus sp. were used as donors, and Escherichia coli JM109 and Enterococcus faecalis JH2-2 were used as recipients. The combination of Vibrio spp. and E. coli resulted in 5/68 positive transconjugants with a transfer rate of 10−7 to 10−3; however, no transfer was observed with E. faecalis. In case of L. garvieae and E. faecalis, 6/6 positive transconjugants were obtained with a transfer rate of 10−6 to 10−5; however, no transfer was observed with E. coli. The tet(M) gene of Bacillus, Lactobacillus, and Paenibacillus were not transferred to either E. coli or E. faecalis. tet(M) transfer was confirmed in positive E. coli and E. faecalis transconjugants by polymerase chain reaction (PCR) and Southern hybridization. All the donor strains did not harbor plasmids, while they all harbored transposon Tn916. In the transconjugants, the transposon was not detected by PCR, suggesting the possible transfer of tet(M) from the marine bacterial chromosome to the recipient chromosome. This is the first report to show that tet(M) can be transferred from marine bacteria to human enteric bacteria in a species-specific manner.  相似文献   

8.
Antimicrobial susceptibility testing with the last-resort antibiotics polymyxins (polymyxin B and colistin) is associated with several methodological issues. Currently, broth microdilution (BMD) is recommended for colistin and polymyxin B. BMD is laborious and the utility of alternative methods needs to be evaluated for polymyxin B susceptibility testing. In this study, using BMD as a reference method, the performance of agar dilution (AD) and MIC test strips (MTS) were evaluated in polymyxin B susceptibility testing. BMD, AD and MTS were used to determine MICs of 193 clinical isolates of Escherichia coli. Seventy-nine were positive for the polymyxin resistance gene mcr-1. Method performances were evaluated based on pair-wise agreements with the reference method (BMD) and statistical testing. AD and MTS showed an unacceptable number of very major errors (VMEs) compared with BMD, 9·3 and 10·7%, respectively. The essential agreement (EA) was low for AD (49·7%), but high for MTS (97·8%). However, statistical testing showed that MTS tended to yield a one-step lower MIC (P < 0·01) compared with BMD. The discordances observed with MTS and AD in comparison with BMD for polymyxin B susceptibility testing for Ecoli suggest their inapplicability in routine testing. A large number of isolates clustered around the susceptibility breakpoint (2–4 mg l−1) and several mcr-1 positive isolates (17%) were determined as susceptible with BMD. A screening breakpoint for mcr-1 of 2 mg l−1 should also be considered.  相似文献   

9.
In this study, the abilities of two anaerobic digestion processes used for sewage sludge stabilization were compared for their ability to reduce the quantities of three genes that encode resistance to tetracycline (tet(A), tet(O), and tet(X)) and one gene involved with integrons (intI1). A two-stage, thermophilic/mesophilic digestion process always resulted in significant decreases in the quantities of tet(X) and intI1, less frequently in decreases of tet(O), and no net decrease in tet(A). The thermophilic stage was primarily responsible for reducing the quantities of these genes, while the subsequent mesophilic stage sometimes caused a rebound in their quantities. In contrast, a conventional anaerobic digestion process rarely caused a significant decrease in the quantities of any of these genes, with significant increases occurring more frequently. Our results demonstrate that anaerobic thermophilic treatment was more efficient in reducing quantities of genes associated with the spread of antibiotic resistance compared to mesophilic digestion.  相似文献   

10.
近年来,多种新型耐药基因的出现和全球性流行,严重威胁了全球公众健康。CRISPR-Cas9系统(clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 system)是细菌的一种适应性免疫系统,可切割耐药基因、抵御外来核酸入侵,现已作为一种新型基因编辑工具应用于防控细菌耐药性研究。本团队已建立了一种单质粒介导靶向mcr-1基因的CRISPR-Cas9系统,能有效并特异性消除黏菌素耐药大肠杆菌中的mcr-1,恢复其对黏菌素的敏感性。同时也发现在临床中应用还需要优化其递送方式。本文对近几年该技术在细菌耐药性防控方面的研究进展进行了综述,包括CRISPR-Cas9系统的发现过程、作用机制、递送方式、在体外检测实验结果的进展以及当前存在的问题等方面,以期为防控细菌耐药性提供新思路。  相似文献   

11.
Dang H  Ren J  Song L  Sun S  An L 《Microbial ecology》2008,55(2):237-246
Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)–(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The last three decades have seen a dwindling number of novel antibiotic classes approved for clinical use and a concurrent increase in levels of antibiotic resistance, necessitating alternative methods to combat the rise of multi-drug resistant bacteria. A promising strategy employs antibiotic adjuvants, non-toxic molecules that disarm antibiotic resistance. When co-dosed with antibiotics, these compounds restore antibiotic efficacy in drug-resistant strains. Herein we identify derivatives of tryptamine, a ubiquitous biochemical scaffold containing an indole ring system, capable of disarming colistin resistance in the Gram-negative bacterial pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli while having no inherent bacterial toxicity. Resistance was overcome in strains carrying endogenous chromosomally-encoded colistin resistance machinery, as well as resistance conferred by the mobile colistin resistance-1 (mcr-1) plasmid-borne gene. These compounds restore a colistin minimum inhibitory concentration (MIC) below the Clinical & Laboratory Sciences Institute (CLSI) breakpoint in all resistant strains.  相似文献   

13.
A literature review was undertaken to ascertain the molecular basis for tigecycline and colistin resistance mechanisms and the experimental basis for the detection and delineation of this resistance particularly in carbapenemase‐producing Gram‐negative bacteria. Pubmed, Google Scholar and Science Direct were searched with the keywords colistin, tigecycline, resistance mechanisms and detection methods. Trans‐complementation and comparative MIC studies, mass spectrometry, chromatography, spectrofluorometry, PCR, qRT‐PCR and whole genome sequencing (WGS) were commonly used to determine tigecycline and colistin resistance mechanisms, specifically modifications in the structural and regulatory efflux (acrAB, OqxAB, kpgABC adeABC‐FGH‐IJK, mexAB‐XY‐oprJM and soxS, rarA robA, ramRAB marRABC, adeLRS, mexRZ and nfxb) and lipid A (pmrHFIJFKLM, lpxA, lpxC lpxD and mgrB, pmrAB, phoPQ,) genes respectively. Mutations in the ribosomal 16S rRNA operon rrnBC, also yielded resistance to tigecycline through target site modifications. The mcr‐1 gene conferring resistance to colistin was identified via WGS, trans‐complementation and a murine thigh infection model studies. Common detection methods are mainly antibiotic sensitivity testing with broth microdilution while molecular identification tools are mostly PCR and WGS. Spectrofluorometry, MALDI‐TOF MS, micro‐array and real‐time multiplex PCR hold much promise for the future as new detection tools.  相似文献   

14.
The susceptibility toward antibiotics was determined by disc and MIC methods in Lactobacillus and, for comparison, in Escherichia coli strains isolated from cloacal swabs of broiler chickens derived from various farms in Slovakia. The occurrence of acquired tetracycline resistance in E. coli and lactobacilli isolated from the same sample was similar. The presence of tet(M), tet(S), tet(L) and ermB genes was demonstrated in lactobacilli while the tet(M) gene was not detected in E. coli.  相似文献   

15.
Colistin is one of the antibiotics of last resort for human health. However, the dissemination of the plasmid-mediated colistin resistance gene mcr-1 is of great concern globally. In the One Health framework, the environment is an important component for managing antimicrobial resistance. However, little information is available concerning the prevalence of mcr-1 in water environments. We aimed to reveal the prevalence of mcr-1 in different water environments in Hanoi, Vietnam. Quantitative PCR was applied to detect mcr-1 in four urban drainages receiving untreated domestic wastewater, three rivers, five lakes and two groundwater samples. Urban drainages contained higher concentrations of mcr-1, suggesting that urban residents carry the gene. The class 1 integron-integrase gene was identified as a good surrogate of antibiotic resistance genes including mcr-1. A significant correlation was found between the levels of mcr-1 and the human-specific cross-assembly phage, which is an indicator of human faecal pollution. These results indicated that the primary source of mcr-1 in urban water environments is human faeces, which is consistent with the fact that most domestic wastewater is untreated in Hanoi. The control of untreated wastewater is critical for alleviating the spread of mcr-1 in water environments in Vietnam.  相似文献   

16.
Aims: In this study, mechanisms of antimicrobial resistance and genetic relatedness among resistant enterococci from dogs and cats in the United States were determined. Methods and Results: Enterococci resistant to chloramphenicol, ciprofloxacin, erythromycin, gentamicin, kanamycin, streptomycin, lincomycin, quinupristin/dalfopristin and tetracycline were screened for the presence of 15 antimicrobial resistance genes. Five tetracycline resistance genes [tet(M), tet(O), tet(L), tet(S) and tet(U)] were detected with tet(M) accounting for approx. 60% (130/216) of tetracycline resistance; erm(B) was also widely distributed among 96% (43/45) of the erythromycin‐resistant enterococci. Five aminoglycoside resistance genes were also detected among the kanamycin‐resistant isolates with the majority of isolates (25/36; 69%) containing aph(3′)‐IIIa. The bifunctional aminoglycoside resistance gene, aac(6′)‐Ie‐aph(2″)‐Ia, was detected in gentamicin‐resistant isolates and ant(6)‐Ia in streptomycin‐resistant isolates. The most common gene combination among enterococci from dogs (n = 11) was erm(B), aac(6′)‐Ie‐aph(2″)‐Ia, aph(3′)‐IIIa, tet(M), while tet(O), tet(L) were most common among cats (n = 18). Using pulsed‐field gel electrophoresis (PFGE), isolates clustered according to enterococcal species, source and antimicrobial gene content and indistinguishable patterns were observed for some isolates from dogs and cats. Conclusion: Enterococci from dogs and cats may be a source of antimicrobial resistance genes. Significance and Impact of the Study: Dogs and cats may act as reservoirs of antimicrobial resistance genes that can be transferred from pets to people. Although host‐specific ecovars of enterococcal species have been described, identical PFGE patterns suggest that enterococcal strains may be exchanged between these two animal species.  相似文献   

17.
Antimicrobial resistance represents a global dilemma. Our present study aimed to investigate the presence of mcr-1 among different Gram-negative bacteria including Enterobacteriaceae (except intrinsically resistant to colistin) and Pseudomonas aeruginosa. Gram-negative bacterial isolates were collected from different ICUs in several Alexandria hospitals from June 2019 to June 2020. The identification of these Gram-negative isolates was made using the VITEK-2® system (BioMérieux, France). SYBR Green-based PCR was used to screen for the presence of mcr-1 using a positive control that we amplified and sequenced earlier in our pilot study. All isolates were screened for the presence of mcr-1 regardless of their colistin susceptibility. Isolates that harbored mcr-1 were tested for colistin susceptibility and for the presence of some beta-lactamase genes. Klebsiella pneumoniae isolates harboring mcr-1 were capsule typed using the wzi sequence analysis. Four hundred eighty isolates were included in this study. Only six isolates harbored mcr-1.1. Of these, four were resistant to colistin, while two (K. pneumoniae and P. aeruginosa) were susceptible to colistin. Five of the six isolates were resistant to carbapenems. They harbored blaOXA-48, and three of them co-harbored blaNDM-1. K-58 was the most often found among our K. pneumoniae harboring mcr-1.1. To our knowledge, this is the first time to report colistin susceptible P. aeruginosa and K. pneumoniae harboring the mcr-1.1 gene in Egypt. Further studies are needed to investigate the presence of the mcr genes among colistin susceptible isolates to shed more light on its significance as a potential threat. Open in a separate window  相似文献   

18.
The aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistant Escherichia coli isolates recovered from beef cattle in South Korea. A total of 155 E. coli isolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance gene tet(A) (46.5%) was the most prevalent, followed by tet(B) (45.1%) and tet(C) (5.8%). Strains carrying tet(A) plus tet(B) and tet(B) plus tet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carrying tet(B) had higher MIC values than isolates carrying tet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistant E. coli isolates in beef cattle is due to the transferability of tetracycline resistance genes between E. coli populations which have survived the selective pressure caused by the use of antimicrobial agents.  相似文献   

19.
Expansion of mcr-carrying Enterobacteriaceae (MCR-E) is a well-recognized problem affecting animals, humans and the environment. Ongoing global control actions involve colistin restrictions among food-animal production, but their impact on poultry-derived products is largely unknown, justifying comprehensive farm-to-fork studies. Occurrence of MCR-E among 53 chicken-meat batches supplied from 29 Portuguese farms shortly after colistin withdrawal was evaluated. Strains (FT-IR/MLST/WGS), mcr plasmids and their adaptive features were characterized by cultural, molecular and genomic approaches. We found high rates of chicken-meat batches (80%–100% – 4 months; 12% – the last month) with multiple MDR + mcr-1-carrying Escherichia coli (Ec-including ST117 and ST648-Cplx) and Klebsiella pneumoniae (Kp-ST147-O5:K35) clones, some of them persisting over time. The mcr-1 was located in the chromosome (Ec-ST297/16-farms) or dispersed IncX4 (Ec-ST602/ST6469/5-farms), IncHI2-ST2/ST4 (Ec-ST533/ST6469/5 farms and Kp-ST147/6-farms) or IncI2 (Ec-ST117/1-farm) plasmids. WGS revealed high load and diversity in virulence, antibiotic resistance and metal tolerance genes. This study supports colistin withdrawal potential efficacy in poultry production and highlights both poultry-production chain as a source of mcr-1 and the risk of foodborne transmission to poultry-meat consumers. Finally, in the antibiotic reduction/replacement context, other potential co-selective pressures (e.g., metals-Cu as feed additives) need to be further understood to guide concerted, effective and durable actions under 'One Health' perspective.  相似文献   

20.
Fluorescence and phosphorescence measurements have been carried out on single-p tryptophan (Trp 43 or Trp 75)-containing mutants of Tet repressor (Tet R). Tet R containing Trp 43, the residue localized in the DNA recognition helix of the repressor, has been used to observe the binding of Tet R to two 20-bp DNA sequences of tet O1 and tet O2 operators. Binding of Tet R to tet O1 operator leads to a 78% decrease of the repressor fluorescence intensity, with an accompanying 20-nm blue shift of its fluorescence emission maximum to 330 nm. Upon binding of Tet R to tet O2 operator, the Trp 43 fluorescence intensity is quenched by 60%, and a 10-nm shift of its emission maximum to 340 nm occurs. Solute fluorescence quenching studies, using acrylamide, performed at low ionic strength indicate that in both the complex of Tet R with the O1 and that with the O2 operator, Trp 43 is moderately buried, as indicated by a bimolecular rate quenching constant of about 1.8 × 109 M–1 sec–1. In contrast to the Tet R–tet O2 complex, the Stern–Volmer acrylamide quenching constant K sv of the complex with tet O1 operator changes from 7.5 M–1 at 5 mM NaCl to 22 M–1 at 200 mM NaCl, indicating different exposures of Trp 43 in the two complexes in solutions of higher ionic strength. Phosphorescence studies showed a 0–0 vibronic transition at 408 and 403 nm for Trp 43 and Trp 75, respectively. Upon binding of Tet R to the tet operators, we observed red shifts of 0–0 vibronic bands of Trp 43 to 413 and 412 nm for tet O1 and tet O2 operator, respectively, and the phosphorescence triplet lifetime of Trp 43 at 75 K was quenched from 6.0–5.5 to 3.5–3.3 sec. The thermal phosphorescence quenching profile ranged from –200°C to –20°C, and differed drastically for the two complexes, suggesting different dynamics of the microenvironment of the Trp 43 residue. The luminescence data for Trp 43 of Tet R suggest that the recognition helix of Tet R interacts in different fashions with the tet O1 and tet O2 operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号