首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
野豌豆属4种植物种子萌发的积温模型分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以青藏高原野豌豆属窄叶野豌豆(Vicia angustifolia)、山野豌豆(V. amoena)、歪头菜(V. unijuga) 3种野生植物与一种当地栽培植物救荒野豌豆(箭筈豌豆) (V. sativa) ‘兰箭3号’种子为材料, 在5、10、15、20、25及30 ℃下进行萌发实验, 应用种子萌发的积温模型对上述4种植物萌发对温度的响应特征进行了比较分析。结果表明: 1)基于萌发速率(1/Tg)对种子萌发温度最低温Tb值的估计受萌发率(g)的影响较小; 与此不同, 除‘兰箭3号’种子外, 对萌发最高温Tc值的估计, 受到g的显著影响。 这表明种群内所有种子个体萌发的Tb值相对恒定, 但Tc值在有些物种中变异较大; 2)基于重复概率单位回归分析估计的种子萌发Tb值与基于萌发速率估计的值较为接近; 而由此方法估计的Tc值则与萌发率为50%时的估计值较为接近; 3)相比多年生豆科植物歪头菜和山野豌豆, 一年生豆科植物箭筈豌豆‘兰箭3号’与窄叶野豌豆具有相对较低的TbTc值; 4)积温模型可准确地预测休眠破除后豆科植物种子在不同温度条件下的萌发进程。  相似文献   

2.

Background and Aims

Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia.

Methods

Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures.

Key Results

Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations.

Conclusions

Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination.  相似文献   

3.
4.

Background and Aims

The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l).

Methods

Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10–25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C).

Key Results

Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (Tb) of 9·0–11·3 °C and a thermal time requirement for 50 % of germination (θ50) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations.

Conclusions

The thermal thresholds for seed germination identified in this study (Tb and θ50) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.  相似文献   

5.
ABSTRACT.
  • 1 Two species of grasshoppers, Arphia conspersa and Trimerotropis suffusa, coexist in a montane habitat in central Colorado.
  • 2 Field-recordings of body temperature revealed that A.conspersa has a significantly lower mean body temperature (Tb), sexual display temperature (Td) and minimum flying temperature (MFT) than T.suffusa.
  • 3 A test of the maximum voluntarily tolerated temperature (MVT) showed that T.suffusa has a higher MVT than A.conspersa.
  • 4 Thermal niche breadth, as indexed by the difference between MVT and MFT and the range of environmental temperatures over which each species is active, is broader in the eurythermic A.conspersa than in the stenothermic T. suffusa.
  • 5 Thermoregulatory ability, as evaluated by regression analysis of Tb on Ta, was shown to be better in T.suffusa than in A.conspersa and in displaying grasshoppers of both species than in non-displaying ones. The significance of these findings with respect to a cost-benefit model of behavioural thermoregulation in ectotherms is discussed.
  • 6 Based on these data and observations it was concluded that A.conspersa and T.suffusa occupy different thermal niches and that thermal considerations may be importantly related to habitat preference, daily activity patterns, and consequent ecological separation.
  相似文献   

6.
A broader understanding of how landscape resistance influences climate change vulnerability for many species is needed, as is an understanding of how barriers to dispersal may impact vulnerability. Freshwater biodiversity is at particular risk, but previous studies have focused on popular cold‐water fishes (e.g., salmon, trout, and char) with relatively large body sizes and mobility. Those fishes may be able to track habitat change more adeptly than less mobile species. Smaller, less mobile fishes are rarely represented in studies demonstrating effects of climate change, but depending on their thermal tolerance, they may be particularly vulnerable to environmental change. By revisiting 280 sites over a 20 year interval throughout a warming riverscape, we described changes in occupancy (i.e., site extirpation and colonization probabilities) and assessed the environmental conditions associated with those changes for four fishes spanning a range of body sizes, thermal and habitat preferences. Two larger‐bodied trout species exhibited small changes in site occupancy, with bull trout experiencing a 9.2% (95% CI = 8.3%–10.1%) reduction, mostly in warmer stream reaches, and westslope cutthroat trout experiencing a nonsignificant 1% increase. The small‐bodied cool water slimy sculpin was originally distributed broadly throughout the network and experienced a 48.0% (95% CI = 42.0%–54.0%) reduction in site occupancy with declines common in warmer stream reaches and areas subject to wildfire disturbances. The small‐bodied comparatively warmer water longnose dace primarily occupied larger streams and increased its occurrence in the lower portions of connected tributaries during the study period. Distribution shifts for sculpin and dace were significantly constrained by barriers, which included anthropogenic water diversions, natural step‐pools and cascades in steeper upstream reaches. Our results suggest that aquatic communities exhibit a range of responses to climate change, and that improving passage and fluvial connectivity will be important climate adaptation tactics for conserving aquatic biodiversity.  相似文献   

7.
Allozymic and morphometric studies were carried out on ten populations of Syngonanthus mucugensis (Eriocaulaceae), a species from north-eastern Brazil threatened by extinction. Genetic and morphological variability was low or moderately low in all populations, being lower in populations from Rio de Contas/Catolés ( P L = 14.3–21.4, A  = 1.1–1.2, H e = 0.026–0.059, D2M = 26.893–33.157) than in those from Mucugê ( P L = 28.6–35.7, A  = 1.3–1.5, H e = 0.078–0.164, D2M = 28.999–45.077). A high coefficient of endogamy ( F is = 0.257) was found, which can be explained by the reproductive characteristics and distribution of the species. The values for genetic and morphological structuring ( F st = 0.512 and A MRPP = 0.175, respectively) were high as a result of the differentiation between populations from the two areas. The mean genetic identity between populations from the two areas (0.812) was much lower than between populations from the same area (Mucugê, 0.980; Rio de Contas/Catolés, 0.997). These results indicate that we are dealing with two distinct taxa and, as a result of the nature of the morphological differences found, a new subspecies is described for the populations of the region of Rio de Contas and Catolés, Syngonanthus mucugensis ssp. riocontensis . Such conclusions raise important implications for the conservation of Syngonanthus mucugensis , and will be used in the drawing up of management plans for its conservation.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 401–416.  相似文献   

8.
The effect of temperature on the distributions of ectothermic vertebrates is well documented. Despite the increase of 6°C expected in the next 60 years in South America, numerous vertebrates are still considered as ‘Least Concern’ species by the IUCN due to their large distribution, insufficient widespread threats and insignificant population decline. One example is the lizard Tropidurus torquatus (Squamata: Tropiduridae), commonly found thermoregulating in anthropic environments throughout the Brazilian Cerrado, but restricted to gallery forests in the equator‐ward localities. The urban areas in this warmer region have been colonised by other closely related congeners (e.g. Tropidurus oreadicus). This study aimed to understand this divergence of habitat selection by these tropirudids that may explain some of the species responses to past and future climate warming. We collected body temperatures (Tb), micro‐environmental temperatures (Ta) and operative (Te) temperatures in four sites along a latitudinal gradient: a pole‐ward and two central sites where T. torquatus inhabit urban areas and one equator‐ward site where T. torquatus and T. oreadicus occur in the gallery forest and in urban microhabitats, respectively. All three populations of T. torquatus present similar Tb (35.5–36°C) and shared microhabitats with a similar Ta (34–37.3°C). The Te in the equator‐ward urban site was considerably higher than in the gallery forest. Tropidurus oreadicus Tb was 38.2 °C (30.1–41.3°C) and was active at a Ta of 30.5–42.3°C. The overlap between the genus Tb, Ta and Te highlights a decrease in the hours of activity that lizards would experience under climate warming. The reduction of hours of activity together with the devastation of natural habitats represents threats and an alarming scenario especially for the equator‐ward populations.  相似文献   

9.
BACKGROUND AND AIMS: The reproductive biology of Syngonanthus mucugensis and S. curralensis (Eriocaulaceae) was studied in areas of 'campo rupestre' vegetation in the Chapada Diamantina, north-eastern Brazil. These species are herbaceous and the individuals have a grouped distribution. Their leaves are united in a rosette, and their inflorescence is monoecious, of the capitulum type. The staminate and pistillate rings mature in a centripetal manner on the capitulum. METHODS: A field study was conducted, including observations concerning the morphology and biology of the flowers, fruit development, insect visits and anemophily, in both S. mucugensis and S. curralensis. Experimental pollinations were also carried out to study the mating systems of S. mucugensis. KEY RESULTS: Both species flower from June to August. The staminate cycle lasts approx. 7 d, and the pistillate cycle from 3 to 4 d, with no temporal overlap between them on the same capitulum. The pollen viability of S. mucugensis was 88.6%, and 92.5% for S. curralensis. The inflorescences of both species demonstrated ultraviolet absorbance, and a sweet odour was detected during both the staminate and pistillate phases. No nectar production was ever noted, although nectaries are present. Both species were visited by numerous groups of insects, with the Diptera being the principal pollinators, especially the species of Syrphidae and Bombyliidae. There were secondary pollinators among species of Coleoptera and Hymenoptera. There was no evidence of wind pollination. Syngonanthus mucugensis is a self-compatible species, and forms fruits by agamospermy at low frequencies. CONCLUSIONS: This is apparently the first report for pollination biology and mating systems of Eriocaulaceae. Conversely to that stated by some authors, entomophily, mainly effected by species of Diptera but also by species of Coleoptera and Hymenoptera, is probably the only pollination system in these species. In spite of the monoecious inflorescences without overlap of the staminate and pistillate phases, geitonogamy may occur in S. mucugensis, as the species is self-compatible and different capitula in the same plant at different phases is common.  相似文献   

10.
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.  相似文献   

11.
Matthew J. Troia  Xingli Giam 《Ecography》2019,42(11):1913-1925
Identifying how close species live to their physiological thermal maxima is essential to understand historical warm‐edge elevational limits of montane faunas and forecast upslope shifts caused by future climate change. We used laboratory experiments to quantify the thermal tolerance and acclimation potential of four fishes (Notropis leuciodus, N. rubricroceus, Etheostoma rufilineatum, E. chlorobranchium) that are endemic to the southern Appalachian Mountains (USA), exhibit different historical elevational limits, and represent the two most species‐rich families in the region. All‐subsets selection of linear regression models using AICc indicated that species, acclimation temperature, collection location and month, and the interaction between species and acclimation temperature were important predictors of thermal maxima (Tmax), which ranged from 28.5 to 37.2°C. Next, we implemented water temperature models and stochastic weather generation to characterize the magnitude and frequency of extreme heat events (Textreme) under historical and future climate scenarios across 25 379 stream reaches in the upper Tennessee River system. Lastly, we used environmental niche models to compare warming tolerances (acclimation‐corrected Tmax minus Textreme) between historically occupied versus unoccupied reaches. Historical warming tolerances, ranging from +2.2 to +10.9°C, increased from low to high elevation and were positive for all species, suggesting that Tmax does not drive warm‐edge (low elevation) range limits. Future warming tolerances were lower (?1.2 to +9.3°C) but remained positive for all species under the direst warming scenario except for a small proportion of reaches historically occupied by E. rufilineatum, indicating that Tmax and acclimation potentials of southern Appalachian minnows and darters are adequate to survive future heat waves. We caution concluding that these species are invulnerable to 21st century warming because sublethal thermal physiology remains poorly understood. Integrating physiological sensitivity and warming exposure demonstrates a general and fine‐grained approach to assess climate change vulnerability for freshwater organisms across physiographically diverse riverscapes.  相似文献   

12.
Global warming is occurring more rapidly above the treeline than at lower elevations and alpine areas are predicted to experience above average warming in the future. Temperature is a primary factor in stimulating seed germination and regulating changes in seed dormancy status. Thus, plant regeneration from seed will be crucial to the persistence, migration and post disturbance recruitment of alpine plants in future climates. Here, we present the first assessment of the impact of soil warming on germination from the persistent alpine soil seed bank. Contrary to expectations, soil warming lead to reduced overall germination from the soil seed bank. However, germination response to soil temperature was species specific such that total species richness actually increased by nine with soil warming. We further explored the system by assessing the prevalence of seed dormancy and germination response to soil disturbance, the frequency of which is predicted to increase under climate change. Seeds of a significant proportion of species demonstrated physiological dormancy mechanisms and germination of several species appeared to be intrinsically linked to soil disturbance. In addition, we found no evidence of subalpine species and little evidence of exotic weed species in the soil, suggesting that the soil seed bank will not facilitate their invasion of the alpine zone. In conclusion, changes in recruitment via the alpine soil seed bank can be expected under climate change, as a result of altered dormancy alleviation and germination cues. Furthermore, the alpine soil seed bank, and the species richness therein, has the potential to help maintain local species diversity, support species range shift and moderate species dominance. Implications for alpine management and areas for further study are also discussed.  相似文献   

13.
Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments are difficult because model predictions are either untestable or so imprecise that definitive answers may not be obtained within timespans relevant for effective conservation. Here, we develop the equations for calculating isotherm shift rates (ISRs) in streams that can be used to represent historic or future warming scenarios and be calibrated to individual streams using local measurements of stream temperature and slope. A set of reference equations and formulas are provided for application to most streams. Example calculations for streams with lapse rates of 0.8 °C/100 m and long‐term warming rates of 0.1–0.2 °C decade?1 indicate that isotherms shift upstream at 0.13–1.3 km decade?1 in steep streams (2–10% slope) and 1.3–25 km decade?1 in flat streams (0.1–1% slope). Used more generally with global scenarios, the equations predict isotherms shifted 1.5–43 km in many streams during the 20th Century as air temperatures increased by 0.6 °C and would shift another 5–143 km in the first half of the 21st Century if midrange projections of a 2 °C air temperature increase occur. Variability analysis suggests that short‐term variation associated with interannual stream temperature changes will mask long‐term isotherm shifts for several decades in most locations, so extended biological monitoring efforts are required to document anticipated distribution shifts. Resampling of historical sites could yield estimates of biological responses in the short term and should be prioritized to validate bioclimatic models and develop a better understanding about the effects of temperature increases on stream biotas.  相似文献   

14.
A species’ thermal sensitivity and its exposure to climate variation are key components in the prediction of its vulnerability to climate change. We tested the thermal sensitivity of a tropical amphibian that lives in a mild constant climate in which the thermal tolerance range is expected to closely match the experienced environmental temperature. The air temperature that this species is exposed to varies between 21.9 and 31.6°C with an annual mean of 27.2°C. We estimated the microhabitat water temperature variation under vegetation shade, which buffers the temperature by 1.8°C in relation to that of the air, and with open canopy, where the water was 1.9°C warmer than the air temperature. With broods of tadpoles split into five treatments (15°C, 21°C, 28°C, 31°C, and 33°C), we estimated the critical thermal maximum (CTMax) and critical thermal minimum (CTMin) after at least 7 days of acclimation. Both CTMax (42.3°C) and CTMin (11.8°C) were more extreme than the temperature range estimated for the field. We estimated the optimum temperature (To = 28.8°C) and the thermal performance breadth (range: 23.3–34.1°C) based on growth rate (g/day). The animals were able to acclimate more extensively to cold than to warm temperatures. These performance curve traits closely matched the air temperature. The estimated vulnerability varied according to the microhabitat prediction model used. The combination of tadpole data on thermal sensitivity and macro‐ and microhabitat variation provides a necessary framework to understand the effects of climate change on tropical amphibians.  相似文献   

15.
Climate change may be a major threat to global biodiversity, especially to tropical species. Yet, why tropical species are more vulnerable to climate change remains unclear. Tropical species are thought to have narrower physiological tolerances to temperature, and they have already experienced a higher estimated frequency of climate-related local extinctions. These two patterns suggest that tropical species are more vulnerable to climate change because they have narrower thermal niche widths. However, no studies have tested whether species with narrower climatic niche widths for temperature have experienced more local extinctions, and if these narrower niche widths can explain the higher frequency of tropical local extinctions. Here, we test these ideas using resurvey data from 538 plant and animal species from 10 studies. We found that mean niche widths among species and the extent of climate change (increase in maximum annual temperatures) together explained most variation (>75%) in the frequency of local extinction among studies. Surprisingly, neither latitude nor occurrence in the tropics alone significantly predicted local extinction among studies, but latitude and niche widths were strongly inversely related. Niche width also significantly predicted local extinction among species, as well as among and (sometimes) within studies. Overall, niche width may offer a relatively simple and accessible predictor of the vulnerability of populations to climate change. Intriguingly, niche width has the best predictive power to explain extinction from global warming when it incorporates coldest yearly temperatures.  相似文献   

16.
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail''s body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail''s upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.  相似文献   

17.
Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time‐lag effects, which are the most important mechanism of climate–vegetation interactive effects. Extensive studies focused on large‐scale vegetation–climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time‐lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time‐lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time‐lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate‐driving factors for different vegetation types were determined. The results showed that (i) both the time‐lag effects of the vegetation responses and the major climate‐driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time‐lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time‐lag effects; (iii) for the area with a significant change trend (for the period 1982–2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time‐lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change.  相似文献   

18.
19.
Short-term changes occurring in high mountain vegetation were analysed using the data from two Italian sites already part of the GLobal Observation Research Initiative in Alpine environments (GLORIA – central Apennines and southwestern Alps). The study focused on a set of floristic (endemics), structural (life forms) and ecological (thermic vegetation indicator) variables. Vegetation data were collected according to the GLORIA multi-summit standardized method during the last decade. The re-visitation revealed a moderate decrease in regional endemic flora and significant variations in structural and ecological parameters. The increase in caespitose hemicryptophytes in both sites, in suffruticose chamaephytes in the central Apennines and in rosette-forming hemicryptophytes in the southwestern Alps emerged, highlighting the rapid responses of the alpine vegetation to climate warming. The increase in perennial life forms is related with the expansion of graminoids and small woody plants. These life forms seem to be most suitable to face climate warming in Italian summits. The increase in the thermic vegetation indicator exceeds the mean European summits increment, and this is due to the expansion of thermophilic species. Short-term analyses with fine spatial and temporal resolutions are still necessary to improve our understanding concerning species behaviour in high-elevation ecosystems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号