首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cocultivation of degrading microorganisms and their antagonists decreases the corrosion loss of carbon steel by 20 to 80%. It was found that a microorganism can either accelerate or inhibit corrosion, depending on the nutrient. The magnitude of the effect on corrosion depends on the ability of the microorganism to respond to changes in the nutrient-medium composition by releasing acidic or alkaline metabolites.  相似文献   

2.
Dong ZH  Liu T  Liu HF 《Biofouling》2011,27(5):487-495
Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions.  相似文献   

3.
Ze Hua Dong  Tao Liu 《Biofouling》2013,29(5):487-495
Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions.  相似文献   

4.
An evaluation of carbon steel corrosion under stagnant seawater conditions   总被引:2,自引:0,他引:2  
Lee JS  Ray RI  Lemieux EJ  Falster AU  Little BJ 《Biofouling》2004,20(4-5):237-247
Corrosion of 1020 carbon steel coupons in natural seawater over a 1-year period was more aggressive under strictly anaerobic stagnant conditions than under aerobic stagnant conditions as measured by weight loss and instantaneous corrosion rate (polarization resistance). Under oxygenated conditions, a two-tiered oxide layer of lepidocrocite/goethite formed. The inner layer was extremely tenacious and resistant to acid cleaning. Under anaerobic conditions, the corrosion product was initially a non-tenacious sulphur-rich corrosion product, mackinawite, with enmeshed bacteria. As more sulphide was produced the mackinawite was transformed to pyrrhotite. In both aerobic and anaerobic exposures, corrosion was more aggressive on horizontally oriented coupons compared to vertically oriented samples.  相似文献   

5.
External corrosion of buried carbon steel pipes is a problem of global proportions, affecting a wide range of industries and services. Many factors affect corrosion rates. Biofilms may secrete enzymes and compounds that attack metal, alter local acidity and create differential aeration and galvanic cells. An important consideration is that biofilm metabolisms and enzymatic reactions are constantly in flux, altering the impact of microorganisms on corrosion rates, and thermodynamic equilibrium is not reached. Recent research demonstrates that some anaerobic microorganisms catalyse the oxidation of metallic iron and directly consume the electrons, with serious consequences for corrosion. This review examines relationships between soil characteristics, microbiology and corrosion processes, focussing on the impacts of microorganisms on external corrosion of buried carbon steel pipes. Techniques for improving the understanding of microbially influenced corrosion are considered and critiqued, with the aim of assisting those who work in the area of corrosion mitigation.  相似文献   

6.
Role of iron-reducing bacteria in corrosion and protection of carbon steel   总被引:2,自引:0,他引:2  
The role of iron-reducing bacteria (IRB) in biocorrosion is under discussion. According to some reports, IRB are able to induce protection of carbon steel while others suggest an important enhancement of corrosion through the reduction and removal of passive films of ferric compounds on the metal surface. In this work, we review recent knowledge concerning microbial respiration, the ecology of IRB containing biofilms and the corrosive or protective effect of such biofilms on metal surfaces.  相似文献   

7.
Understanding the corrosion of carbon steel materials of low and intermediate level radioactive waste under repository conditions is crucial to ensure the safe storage of radioactive contaminated materials. The waste will be in contact with the concrete of repository silos and storage containers, and eventually with groundwater. In this study, the corrosion of carbon steel under repository conditions as well as the microbial community forming biofilm on the carbon steel samples, consisting of bacteria, archaea, and fungi, was studied over a period of three years in a groundwater environment with and without inserted concrete. The number of biofilm forming bacteria and archaea was 1,000-fold lower, with corrosion rates 620-times lower in the presence of concrete compared to the natural groundwater environment. However, localized corrosion was detected in the concrete–groundwater environment indicating the presence of local microenvironments where the conditions for pitting corrosion were favorable.  相似文献   

8.
Formose syrup was studied as a carbon source for growth of a series of microorganisms obtained from various collections. Approximately 80 strains of bacteria, yeasts, and molds were inoculated into a medium containing formose syrup and mineral salts supplemented with small amounts of yeast extract and casein hydrolysate to supply accessory growth factors. Two preparations of formose syrup, produced by two different laboratories, were employed. Formose syrup I, characterized by a low sugar content, was poorly utilized; syrup II, containing a higher sugar concentration, was utilized to a greater extent. Two strains of Aerobacter acrogenes yielded 1.3 g dry cell mass from an initial charge of 10 g of formose II solids, whereas growth on 10 g of D -glucose amounted to 3.7 g. Klebsiella aerogenes MIT-B44, the best microbial strain isolated from soil by an enrichment technique, produced 1.3 g cells from 10 g fromose syrup II solids in supplemented medium; in direct comparisons, it produced 10–15% more cell 0.7–0.9 g cells per 10 g formose and grew with a doubling time of 55–70 min. Under such conditions, its macromolecular composition was 52% protein, 22% RNA, and 2% DNA. Although the apparent yield of cells from formose was only 8–11%, the actual yield based on formose utilized was 30%, the same as observed with glucose. A second strain was isolated from soil by enrichment with spent broth from K. aerogenes. This unidentified gram-negative, short rod-shaped bacterium grew in mixed culture with strain MIT-B44; in unsupplemented media they produced 1.55 g cells from 10 g formose II solids and 2.9 g cells from 10 g glucose.  相似文献   

9.
The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons.  相似文献   

10.
11.
海洋环境的复杂多变性使海洋腐蚀成为一个日益严重的全球性问题。海洋腐蚀在造成巨大经济损失的同时,还带来了严重的环境污染以及人员安全问题,使其成为海洋经济发展中必须要解决的关键问题。据统计海洋环境中20%的腐蚀由微生物引起,腐蚀微生物(microbiologically influenced corrosion,MIC)以生物膜的形式存在于金属表面,其主要包括细菌、古菌、真菌及藻类等。基于对以往研究的综述,本文总结了这4类海洋微生物的研究进展,阐述了海洋腐蚀环境中腐蚀微生物的种类、群落组成影响因素及其作用机理等内容;同时,文中概述了微生物对金属材料促进腐蚀或抑制腐蚀的影响因素及其作用机制,并归纳了当前海洋环境中微生物腐蚀的防治方法;最后,本研究对海洋环境下微生物腐蚀研究及防治的发展趋势进行了论述,以期为腐蚀机制的研究与防腐工作的实施提供参考。  相似文献   

12.
Seawater is a complex corrosive system, and biofouling is one of the factors that influences corrosion processes. The behaviour of corrosion associated with the development of macrofouling was investigated during the first 6 months of the successional process. Three treatments were compared: the 'Control' treatment (absence of macrofouling); 'Community' treatment, and 'Barnacle' treatment, where other macroorganisms were excluded. In the Community treatment, the dominant organisms were filamentous macroalgae (23.73%), barnacles (17.51%), hydroids (16.96%) and encrusting bryozoans (9.58%). In the Barnacle treatment, the cover varied between 39.38% and 62.50%. The corrosion potential ranged from -665.75 to -517.50 mV(Ag/AgC l((KCl))) and could not be associated with fouling development. The highest corrosion rate in the control suggests that macrofouling provides a protection against mass loss. The highest percentage of localised attacks was found in the Community treatment. This may indicate that not only barnacles, but also other organisms induce localised corrosion.  相似文献   

13.
Phenol degradation by microorganisms adsorbed on activated carbon   总被引:5,自引:0,他引:5  
Summary The phenol degradation by Candida sp. and Pseudomonas sp. immobilized on activated carbon was investigated. Thanks to its great adsorptive surface, activated carbon is suited as supporting material for microorganisms and also provides a high adsorption capacity for phenol.The immobilization by adsorption avoids any unphysiological treatment of the microorganisms. One gram activated carbon adsorbed in 10 h about 4×109 Pseudomonas cells and 3×108 Candida cells. While the free cells did not tolerate more than 1.5 g/l phenol, the adsorbed microorganisms survived at temporary high phenol concentrations up to 15 g/l, and they degraded about 90% of the adsorbed phenol.The activated carbon operated like a depot: the adsorbed phenol diffused out of the carbon and could be metabolized by the microorganisms. The results give an explanation of the stimulating effect of activated carbon in the treatment of waste waters observed until now.  相似文献   

14.
15.
Biofouling and biocorrosion lead to an important modification of the metal/ solution interface inducing changes in the type and concentration of ions, pH values, oxygen levels, flow velocity, etc. Metal dissolution in seawater is mainly conditioned by two different processes: (a) biofouling settlement and (b) corrosion products formation.Corrosion-resistant alloys such as stainless steel present an ideal substratum for microbial colonization, rather similar to inert non-metallic surfaces, due to the lack of corrosion products. Stainless steels are sensitive to pitting and other types of localized corrosion in chloride-containing media such as seawater. Biofilms and bacterial metabolism may accelerate the initiation of crevice attack by depletion of oxygen in the crevice solution due to microbial respiration. Bacterial colonization occurs within a period of 24–72 h on stainless steel samples exposed to natural seawater and, depending on environmental conditions, a copious and patchy biofilm is generally formed.Different interpretations of biofilms' effects on corrosion are critically discussed. A practical case, involving polluted harbour seawater, is reported to illustrate biofilm and corrosion interactions on stainless steel samples.  相似文献   

16.
The adsorption of proteins at solid–liquid interfaces is important in biosensor and biomaterial applications. Marine mussels affix themselves to surfaces using a highly cross‐linked, protein‐based adhesive containing a high proportion of L‐3,4‐dihydroxyphenylalanine (DOPA) residues. In this work, the effect of DOPA residues on protein adhesion on stainless steel surfaces was studied using a quartz crystal microbalance with dissipation system. The adsorption of two repetitive peptide motifs, KGYKYYGGSS and KGYKYY, from the mussel Mytilus edulis foot protein 5 on stainless steel was studied before and after chemo‐enzymatic modification of tyrosine residues to DOPA using mushroom tyrosinase. Conversion from tyrosine to DOPA, evaluated by HPLC, was in the range 70–99%. DOPA‐modified sequences showed fourfold greater adhesion than unmodified M. edulis foot protein 5 motifs. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Tests were conducted on the performance of UNS S31600 stainless steel (SS) in a natural day/night cycle vs full darkness under conditions of natural marine biofilm accumulation. In quiescent flowing seawater tests in the laboratory as well as under natural immersion in the sea, diffuse sunlight (~10% of natural) counteracted the influence of marine biofilms and produced substantial inhibition of the corrosion of SS. Thus, the probabilities (percentage attack) and propagation rates (depths of attack) in multiple crevice tests were substantially lower in the day/night cycle than in the dark. A benefit was also observed for welded SS in terms of the time to corrosion initiation and the mass loss. SS in the passive state showed broader passive regions, well-defined breakdown potentials and markedly smaller anodic and cathodic current densities under the diurnal cycle. The overall reduction in corrosion is attributed to a combination of electrochemical photoinhibition and simultaneous photoinactivation of microbially mediated metal redox reactions linked to cathodic kinetics. These data offer fresh insights into the behaviour of SS under practical seawater situations and the proposed potential use of illumination in the mitigation of biologically influenced consequences.  相似文献   

18.
Tests were conducted on the performance of UNS S31600 stainless steel (SS) in a natural day/night cycle vs full darkness under conditions of natural marine biofilm accumulation. In quiescent flowing seawater tests in the laboratory as well as under natural immersion in the sea, diffuse sunlight (~10% of natural) counteracted the influence of marine biofilms and produced substantial inhibition of the corrosion of SS. Thus, the probabilities (percentage attack) and propagation rates (depths of attack) in multiple crevice tests were substantially lower in the day/night cycle than in the dark. A benefit was also observed for welded SS in terms of the time to corrosion initiation and the mass loss. SS in the passive state showed broader passive regions, well-defined breakdown potentials and markedly smaller anodic and cathodic current densities under the diurnal cycle. The overall reduction in corrosion is attributed to a combination of electrochemical photoinhibition and simultaneous photoinactivation of microbially mediated metal redox reactions linked to cathodic kinetics. These data offer fresh insights into the behaviour of SS under practical seawater situations and the proposed potential use of illumination in the mitigation of biologically influenced consequences.  相似文献   

19.
The effects of soil moisture changes on bacteria, fungi, protozoa, and nematodes and changes in oxygen consumption were studied in a field experiment. In one plot the soil was drip-irrigated daily for 10 days, while an adjacent plot experienced one rainfall and was then allowed to dry out. Oxygen consumption was the parameter measured which responded most rapidly to changes in soil moisture content. Lengths of fluorescein diacetate-active hyphae paralleled oxygen consumption in both plots. Total hyphal length was not affected by one rainfall but increased from 700 mg–1 dry weight soil to more than 1,600 m in less than 10 days in the irrigated plot. In the rain plot, bacterial numbers doubled within 3 days and declined during the following period of drought. In the irrigated plot, numbers increased by 50% and then remained constant over the duration of the study. Only small changes in protozoan numbers were observed, with the exception of the last sampling date in the irrigated plot when large numbers of naked amoebae were recorded 2 days after a large natural rainfall. Nematode numbers, especially obligate root feeders, increased in both treatments. The increases were caused by decoiling rather than growth. The results indicate that fungal respiration was dominating, while bacteria, lacking a suitable source of energy, were less active, except for the first days.  相似文献   

20.
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can be key players in ammonia biotransformation in the environment. Soil organic matter can affect the distribution of soil AOA and AOB. However, the link between organic matter and AOA and AOB communities remain largely unclear. The current study investigated the impact of organic carbon amendment on the abundance and composition of ammonia-oxidating microorganisms in reed-planted soil in a riparian zone of the Miyun Reservoir (Beijing). The results indicated that AOB outnumbered AOA in riparian wetland soil both before and after glucose application. Glucose application significantly increased the abundance of AOA , but had only a slight impact on the abundance of AOB. The addition of glucose had a strong impact on the community structures of both AOA and AOB. Moreover, phylogenetic analysis indicated that the obtained archaeal amoA gene sequences showed no close relationship with cultivated AOA species. Few Nitrosospira-like AOB sequences were detected in glucose-amended soil. This study may provide some new insight regarding soil ammonia-oxidizing microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号