首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Some native groups of the South Pacific islands dwell in lowland swamps, an adverse environment for man. To ensure their sustenance, they rely on foraging for plants thriving naturally in the swamps such as sago palms (Metroxylon spp.) or theBruguiera mangrove trees. Sometimes they grow plants adapted to the marsh conditions, such asCyrtosperma chamissonis. The present work sums up the knowledge we have of these plants and their uses in Oceania.  相似文献   

2.
3.
4.
5.
6.
7.
Referring to Space: Studies in Austronesian and Papuan Languages. Gunter Senft. ed. New York: Oxford University Press, 1998.324 pp.  相似文献   

8.
Cornelius Lütz 《Protoplasma》2010,244(1-4):53-73
The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0°C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of UV. Thus, their defense and antioxidant role dominates. Ultrastructural comparisons were unable to find special light adaptations in plants taken from polar regions vs. high alpine species. The only adaptation found at the subcellular level for most alpine and polar plants are protrusions of the chloroplast envelopes. They are seen as a demand for fast membrane transport requiring additional membrane surface area, whereby the increase in stroma volume may help to support carbohydrate formation. Plants forming such protrusions have to cope with a short vegetation time. These observations are connected to the question as to how photosynthesis works quite well even at or under zero temperatures. The interplay between plastids, mitochondria, and peroxisomes, known as photorespiration, seems to be more intense than in lowland plants. This organelle cooperation serves as a valve for a surplus in solar energy input under cold conditions. Additional metabolic acclimations are under investigation, such as the role of an alternative plastid terminal oxidase. Plants from cold environments may also be seen as ideal objects for studying the combined effects of high light plus cold resistance—from the molecular level to the whole plant adaptation. Modern instrumentation makes it possible to perform vital metabolic measurements under outdoor conditions, and research stations in remote polar and alpine areas provide support for scientists in the preparation of samples for later cellular studies in the home laboratory.  相似文献   

9.
10.
Chicoric acid was isolated from dandelion (Taraxacum officinale Wigg.) leaves by column chromatography. Conditions for HPLC analysis of chicoric and chlorogenic acids were optimized. These acids were assayed in some plants growing in Georgia. The optimum conservation temperature for the preservation of chicoric and chlorogenic acids in leaves of dandelion and bilberry (Vaccinium arctostaphylos L.) was determined.  相似文献   

11.
12.
Brown  Patrick H.  Hu  Hening 《Plant and Soil》1997,196(2):211-215
In species in which boron (B) mobility is limited, B deficiency only occurs in growing plant organs. As a consequence of the highly localized patterns of plant growth and the general immobility of B it has been extremely difficult to determine the primary function of B in plants. In species in which B is phloem mobile, the removal of B from the growth medium results in the depletion of B present in mature leaves. Thus, it is possible to develop mature leaves with increasingly severe levels of B depletion, thereby overcoming the complications of experiments based on growing tissues. Utilizing this approach we demonstrate here that B depletion of mature plum (Prunus salicina) leaves did not result in any discernible change in leaf appearance, membrane integrity or photosynthetic capacity even though B concentrations were reduced to 6-8 µg/g dwt, which is less than 30% of the reported tissue B requirement. Boron depletion, however, results in a severe disruption of plant growth and metabolism in young growing tissues. This experimental evidence and theoretical considerations suggest that the primary and possibly sole function of B, is as a structural component of growing tissues.  相似文献   

13.
14.
BACKGROUND AND AIMS: Carbon gain depends on efficient photosynthesis and adequate respiration. The effect of temperature on photosynthetic efficiency is well understood. In contrast, the temperature response of respiration is based almost entirely on short-term (hours) measurements in mature organisms to develop Q(10) values for maintenance and whole-plant respiration. These Q(10) values are then used to extrapolate across whole life cycles to predict the influence of temperature on plant growth. METHODS: In this study, night temperature in young, rapidly growing plant communities was altered from 17 to 34 degrees C for up to 20 d. Day temperature was maintained at 25 degrees C. CO(2) gas-exchange was continuously monitored in ten separate chambers to quantify the effect of night-temperature on respiration, photosynthesis and the efficiency of carbon gain (carbon use efficiency). KEY RESULTS: Respiration increased only 20-46 % for each 10 degrees C rise in temperature (total respiratory Q(10) of between 1.2 to about 1.5). This change resulted in only a 2-12 % change in carbon use efficiency, and there was no effect on cumulative carbon gain or dry mass. No acclimation of respiration was observed after 20 d of treatment. CONCLUSIONS: These findings indicate that whole-plant respiration of rapidly growing plants has a small sensitivity to temperature, and that the sensitivity does not change among the species tested, even after 20 d of treatment. Finally, the results support respiration models that separate respiration into growth and maintenance components.  相似文献   

15.
This study investigated the distribution and accumulation of strontium (Sr) in the shoots and roots of Euphorbia macroclada (EU), Verbascum cheiranthifolium (VR), and Astragalus gummifer (AS), with respect to their potential use in phytoremediation. Plant samples and their associated soils were collected from the arid and semi-arid Keban mining area and were analyzed inductively by ICP-MS for Sr. Mean Sr values in the shoots, roots and soil were, respectively, 453, 243 and 398 mg kg?1 for E. macroclada; 149, 106 and 398 mg kg?1 for V. cheiranthifolium; and 278, 223 and 469 mg kg?1 for A. gummifer. The enrichment factors for root (ECR) and shoot (ECS) of these plants were lower than 1 or close to 1, except for the shoot of E. macroclada. The mean translocation factors (TLF) of these plants were higher than 1 and 2.08 for E. macroclada, 1.47 for V. cheiranthifolium, 1.18 for A. gummifer. It thus appeared that the shoots of these plants can be an efficient bioaccumulator plant for Sr and it can be used in cleaning or rehabilitating of the contaminated soil and areas by Sr because of their high translocation factors.  相似文献   

16.
La comparaison du corps humain à une machine est une métaphore dominante dans la pensée occidentale depuis le Siècle des Lumières au moins. À partir de recherches menées dans le Nord de l'Angleterre auprès de jardiniers, l'auteure explore un autre ensemble d'associations. Elle examine les implications des pratiques et connaissances du jardinage en Angleterre qui mettent l'accent sur des parallèles réciproques entre le corps et l'intentionnalité des humains et ceux des plantes. Bien que les humains ne soient pas assimilés aux végétaux, les plantes sont intégrées dans une vision du monde qui n'est pas rigoureusement mécaniste. L'auteure examine les implications qu'aurait une approche «simplement>> métaphorique de ces liens entre plantes et personnes et avance qu'il faut, pour les décrire, un cadre théorique dont l'espace analytique irait au-delà de la métaphore.  相似文献   

17.
COWGILL, U. M. & LANDENBERGER, B.D., 1992. The chemical composition of Astragalus: a comparison of seleniferous and non-seleniferous plants growing side by side. This paper describes how non-seleniferous plant species coexist with seleniferous ones and what chemical changes occur in non-seleniferous species that allow the toleration of large quantities of volatilized Se-bearing compounds. These compounds are known for their phytotoxicity as well as for their toxicity to mammals and insects. Twenty-three sites (Colorado, Utah, New Mexico, U.S.A.) were examined over a 6-year period. Plants collected from these sites were divided into four groups: seleniferous astragali, seleniferous Brassicaceae, non-seleniferous astragali and non-seleniferous associated genera. Furthermore, it was possible to categorize these sites: Type 1 sites supported all four groups of plants, Type 2 sites contained only seleniferous astragali, whereas Type 3 sites sustained only non-seleniferous astragali. When concentrations of Cu, Zn (P <0.0001), Si (P<0.02), As, Pb (P<0.03) and Cs (P<0.05) were measured, the values for those seleniferous astragali that coexisted with other species were significantly different from the values found for those seleniferous astragali that grew alone. There were four areas that in some years supported all four groups of plants (Type 1 site) and in other years contained only seleniferous astragali. In this way, the latter may be used as a chemical control for the former. The seleniferous astragali collected at Type 1 sites always contained more Cu, As, Si and Pb than the solitary astragali of Type 2 sites. When seleniferous astragali of Type 1 sites that support all four groups of plants develop in a year where the usually associated species of past years are absent, they contain in their tissues concentrations of Cu, As, Si, Pb, Zn and Cs typical of Type 2 sites where the seleniferous astragali grew alone. Non-seleniferous astragali of Type 1 sites that support all four groups of plants have a chemical composition that differs significantly in the quantity of 15 elements from non-seleniferous astragali of Type 3 sites where the latter grew alone. Since allelochemicals such as phenolic acids and flavonoids are well known to be able to alter mineral absorption by plants and since the astragali are known to produce such substances, it is suggested that the possible production of phenolic acids and flavonoids may permit coexistence of seleniferous plants with non-seleniferous ones and thus explain the chemical differences among the plants of the four types of sites.  相似文献   

18.
This article focuses on human‐plant relations, drawing on ethnographic research from northern Australia's Gulf Country to address the concept of indigeneity. Just as the identities of ‘Indigenous’ and ‘non‐Indigenous’ people in this region are contextual and at times contested according to the vernacular categories of ‘Blackfellas’, ‘Whitefellas’, and ‘Yellafellas’, so too the issue of what ‘belongs’ in the natural world is negotiated through ambiguities about whether species are useful, productive, and aesthetically pleasing to humans, as well as local understandings about how plants and animals came to be located in the Gulf region. At the same time, plants’ distinctive characteristics as plants shape their relations with humans in ways which affect their categorization as ‘native’ and ‘alien’ or ‘introduced’. Focusing our analysis on three specific trees, we argue that attention to the ‘plantiness’ of flora contributes significantly to debates about indigeneity in society and nature. At the same time, our focus on human‐plant relations contributes important context and nuance to current debates about human and other‐than‐human relations in a more‐than‐human world.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号