首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halophilic archaea thriving in hypersaline environments, such as salt lakes, offer models for putative life in extraterrestrial brines such as those found on Mars. However, little is known about the effect of the chaotropic salts that could be found in such brines, such as MgCl2, CaCl2 and (per)chlorate salts, on complex biological samples like cell lysates which could be expected to be more representative of biomarkers left behind putative extraterrestrial life forms. We used intrinsic fluorescence to study the salt dependence of proteomes extracted from five halophilic strains: Haloarcula marismortui, Halobacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and Haloferax volcanii. These strains were isolated from Earth environments with different salt compositions. Among the five strains that were analysed, H. mediterranei stood out as a results of its high dependency on NaCl for its proteome stabilization. Interestingly, the results showed contrasting denaturation responses of the proteomes to chaotropic salts. In particular, the proteomes of strains that are most dependent or tolerant on MgCl2 for growth exhibited higher tolerance towards chaotropic salts that are abundant in terrestrial and Martian brines. These experiments bridge together global protein properties and environmental adaptation and help guide the search for protein-like biomarkers in extraterrestrial briny environments.  相似文献   

2.
Deep-sea hypersaline anoxic basins (DHABs) are uniquely stratified polyextreme environments generally found in enclosed seas. These environments select for elusive and widely uncharacterized microbes that may be living below the currently recognized window of life on Earth. Still, there is strong evidence of highly specialized active microbial communities in the Kryos, Discovery, and Hephaestus basins located in the Eastern Mediterranean Sea; the only known athalassohaline DHABs. Life is further constrained in these DHABs as near-saturated concentrations of magnesium chloride significantly reduces water activity (aw) and exerts extreme chaotropic stress, the tendency of a solution to disorder biomolecules. In this review, we provide an overview of microbial adaptations to polyextremes focusing primarily on chaotropicity, summarize current evidence of microbial life within athalassohaline DHABs and describe the difficulties of life detection approaches and sampling within these environments. We also reveal inconsistent measurements of chaotropic activity in the literature highlighting the need for a new methodology. Finally, we generate recommendations for future investigations and discuss the importance of athalassohaline DHAB research to help inform extraterrestrial life detection missions.  相似文献   

3.
The biosphere of planet Earth is delineated by physico-chemical conditions that are too harsh for, or inconsistent with, life processes and maintenance of the structure and function of biomolecules. To define the window of life on Earth (and perhaps gain insights into the limits that life could tolerate elsewhere), and hence understand some of the most unusual biological activities that operate at such extremes, it is necessary to understand the causes and cellular basis of systems failure beyond these windows. Because water plays such a central role in biomolecules and bioprocesses, its availability, properties and behaviour are among the key life-limiting parameters. Saline waters dominate the Earth, with the oceans holding 96.5% of the planet's water. Saline groundwater, inland seas or saltwater lakes hold another 1%, a quantity that exceeds the world's available freshwater. About one quarter of Earth's land mass is underlain by salt, often more than 100 m thick. Evaporite deposits contain hypersaline waters within and between their salt crystals, and even contain large subterranean salt lakes, and therefore represent significant microbial habitats. Salts have a major impact on the nature and extent of the biosphere, because solutes radically influence water's availability (water activity) and exert other activities that also affect biological systems (e.g. ionic, kosmotropic, chaotropic and those that affect cell turgor), and as a consequence can be major stressors of cellular systems. Despite the stressor effects of salts, hypersaline environments can be heavily populated with salt-tolerant or -dependent microbes, the halophiles. The most common salt in hypersaline environments is NaCl, but many evaporite deposits and brines are also rich in other salts, including MgCl(2) (several hundred million tonnes of bischofite, MgCl(2).6H(2)O, occur in one formation alone). Magnesium (Mg) is the third most abundant element dissolved in seawater and is ubiquitous in the Earth's crust, and throughout the Solar System, where it exists in association with a variety of anions. Magnesium chloride is exceptionally soluble in water, so can achieve high concentrations (> 5 M) in brines. However, while NaCl-dominated hypersaline environments are habitats for a rich variety of salt-adapted microbes, there are contradictory indications of life in MgCl(2)-rich environments. In this work, we have sought to obtain new insights into how MgCl(2) affects cellular systems, to assess whether MgCl(2) can determine the window of life, and, if so, to derive a value for this window. We have dissected two relevant cellular stress-related activities of MgCl(2) solutions, namely water activity reduction and chaotropicity, and analysed signatures of life at different concentrations of MgCl(2) in a natural environment, namely the 0.05-5.05 M MgCl(2) gradient of the seawater : hypersaline brine interface of Discovery Basin - a large, stable brine lake almost saturated with MgCl(2), located on the Mediterranean Sea floor. We document here the exceptional chaotropicity of MgCl(2), and show that this property, rather than water activity reduction, inhibits life by denaturing biological macromolecules. In vitro, a test enzyme was totally inhibited by MgCl(2) at concentrations below 1 M; and culture medium with MgCl(2) concentrations above 1.26 M inhibited the growth of microbes in samples taken from all parts of the Discovery interface. Although DNA and rRNA from key microbial groups (sulfate reducers and methanogens) were detected along the entire MgCl(2) gradient of the seawater : Discovery brine interface, mRNA, a highly labile indicator of active microbes, was recovered only from the upper part of the chemocline at MgCl(2) concentrations of less than 2.3 M. We also show that the extreme chaotropicity of MgCl(2) at high concentrations not only denatures macromolecules, but also preserves the more stable ones: such indicator molecules, hitherto regarded as evidence of life, may thus be misleading signatures in chaotropic environments. Thus, the chaotropicity of MgCl(2) would appear to be a window-of-life-determining parameter, and the results obtained here suggest that the upper MgCl(2) concentration for life, in the absence of compensating (e.g. kosmotropic) solutes, is about 2.3 M.  相似文献   

4.
Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil‐ and plant‐health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (aw) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at aw values of ≤ 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions.  相似文献   

5.
The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history.  相似文献   

6.
Eighteen strains of extremely halophilic bacteria and three strains of moderately halophilic bacteria were isolated from four different solar salt environments. Growth tests on carbohydrates, low-molecular-weight carboxylic acids, and complex medium demonstrated that the moderate halophiles and strains of the extreme halophiles Haloarcula and Halococcus grew on most of the substrates tested. Among the Halobacterium isolates were several metabolic groups: strains that grew on a broad range of substrates and strains that were essentially confined to either amino acid (peptone) or carbohydrate oxidation. One strain (WS-4) only grew well on pyruvate and acetate. Most strains of extreme halophiles grew by anaerobic fermentation and possibly by nitrate reduction. Tests of growth potential in natural saltern brines demonstrated that none of the halobacteria grew well in brines which harbor the densest populations of these bacteria in solar salterns. All grew best in brines which were unsaturated with NaCl. The high concentrations of Na+ and Mg2+ found in saltern crystallizer brines limited bacterial growth, but the concentrations of K+ found in these brines had little effect. MgSO4 was relatively more inhibitory to the extreme halophiles than was MgCl2, but the reverse was true for the moderate halophiles.  相似文献   

7.
Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent.  相似文献   

8.
Summary The modifying effect of calcium (Ca) on the salinity tolerance of Wimmera ryegrass during germination and early seedling growth was studied. Pretreatment of seeds with Ca has no significant effect on germination under NaCl or MgCl2 salinity. The addition of Ca to the germination medium increased the germination percentage significantly, especially with MgCl2. Significant increases in seedling shoot and root growth also occurred with Ca addition to the growth medium under MgCl2 salinity.  相似文献   

9.
Petunia (Petunia hybrida Vilm. cv. ‘Snowstorm') plants were grown in saline solution (NaCl, MgCl2, and/or CaCl2) of 0, 1, 2, and 3 bars osmotic pressures. Pollen viability was tested by tetrazolium chloride staining and by germination (by the hanging drop method, using 15 % sucrose and 0.01 % boric acid as the nutrient medium, at 27 ± 1 C). Pollen viability decreased with increased salinity. Pollen from plants grown in single salt solutions of NaCl, MgCl2, and CaCl2 (each at 0, 1, 2, or 3 bars osmotic pressure) was germinated in base culture medium. Pollen viability decreased more with NaCl than with MgCl2 or CaCl2. In vitro studies of the effects of three salts, viz., NaCl, MgCl2, and CaCl2, on pollen germination and tube growth showed that NaCl inhibited germination and pollen tube growth more than did MgCl2 or CaCl2. MgCl2 was least injurious, and even promoted tube growth at 0.5 and 0.75 bars osmotic pressure. Adding low concentrations of MgCl2 reduced the toxic effect of NaCl and increased the percentage of germination. CaCl2 reduced the effect of NaCl less than did MgCl2. We conclude that specific ion effects were more important than osmotic pressure.  相似文献   

10.
Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it.  相似文献   

11.
I. The Plasmalemma. 1. On the plasmalemma of amebæ CaCl2 antagonizes the toxic action of LiCl better than it does NaCl, and still better than it does KCl. MgCl2 antagonizes the toxic action of NaCl better than it does LiCl and still better than it does KCl. 2. CaCl2 antagonizes the toxic action of LiCl and of KCl better than does MgCl2: MgCl2 antagonizes NaCl better than does CaCl2. II. The Internal Protoplasm. 3. The antagonizing efficiency of CaCl2 and of MgCl2 are highest against the toxic action of KCl on the internal protoplasm, less against that of NaCl, and least against that of LiCl. 4. CaCl2 antagonizes the toxic action of LiCl better than does MgCl2: MgCl2 antagonizes the toxic action of NaCl and of KCl better than does CaCl2. 5. LiCl antagonizes the toxic action of MgCl2 on the internal protoplasm more effectively than do NaCl or KCl, which have an equal antagonizing effect on the MgCl2 action. III. The Nature of Antagonism. 6. When the concentration of an antagonizing salt is increased to a toxic value, it acts synergistically with a toxic salt. 7. No case was found in which a potentially antagonistic salt abolishes the toxic action of a salt unless it is present at the site (surface or interior) of toxic action. 8. Antagonistic actions of the salts used in these experiments are of differing effectiveness on the internal protoplasm and on the surface membrane.  相似文献   

12.
Summary The penetration of the dye, dahlia, into the sap ofNitella has been determined in the presence of NaCl, KCl, MgCl2 and CaCl2 at various concentrations.NaCl is the least effective and MgCl2 was the most effective in preventing penetration of the dye.It was found that NaCl antagonizes the action of CaCl2 in certain proportions to a small degree but not sufficiently to permit the dye to penetrate at a normal rate.Published by permission of the Surgeon General.  相似文献   

13.

We obtained four isolates of the xerophilic genus Wallemia from the rooftop of a house made of red brick and cement in an agronomic field planted with common beans and maize in Pachacamac, Lima, Peru. Bayesian phylogenetic analysis with rDNA gene sequences showed these Wallemia isolates form a distinct and strongly supported clade closely related to W. hederae. We examined the macro and micromorphology, growth rate and production of exudates of isolates on media containing different amounts of glucose and NaCl (water activity from 0.9993 to 0.8480). Their chaotropic and kosmotropic tolerance were tested on media with multiple molar concentrations of MgCl2 and MgSO4 (water activity from 0.9880 to 0.7877). Isolates are xerophilic and halotolerant, growing on 17% NaCl-supplemented media (water activity = 0.8480). Maximum concentrations of MgCl2 and MgSO4 at which growth was observed were 1.7 and 3.5 M, respectively. Isolates were shown to represent a novel species, described as Wallemia peruviensis sp. nov. In contrast to W. hederae, W. peruviensis does not produce exudates on malt extract agar + 17% NaCl media. An updated dichotomous key to Wallemia species is provided. This is the first new species of Wallemia described from South America and the first association of a Wallemia species with an agricultural environment on this continent.

  相似文献   

14.
1. The question of the critical pore diameter for streaming potential is discussed. 2. The surface charge is calculated for cellulose in contact with solutions of K3PO4, K2CO3, K2SO4, KCl, and ThCl4. 3. The surface charge of cellulose in contact with a solution of 2 x 10–4 N NaCl is calculated as a function of temperature and is found to show a sharp break at 39°. This is interpreted in terms of the change of the specific heat of water. 4. A marked ion antagonism is found in NaCl:KCl, KCl:MgCl2, NaCl:MgCl2, NaCl:CaCl2, KCl:CaCl2, CaCl2:MgCl2 mixtures when the surface charge is calculated as a function of concentration.  相似文献   

15.
Andreas Weith 《Chromosoma》1985,91(3-4):287-296
The fine structure of constitutive heterochromatin and euchromatin was compared in electron microscope whole-mount preparations of Tenebrio molitor (Insecta, Coleoptera) spermatocyte nuclei. Tenebrio molitor pachytene chromosomes display extended segments of centromeric heterochromatin and thus are especially suitable for this purpose. When nuclei were incubated in solutions containing different concentrations of NaCl or of MgCl2, two levels of chromatin fine structures were observed in the euchromatic segments: nucleosome fibers (0.1 mM–20 mM NaCl) and supranucleosomal fibers with 28 nm in diameter (40 mM–100 mM NaCl, 0.2 mM–1.0 mM MgCl2). The fine structure in the heterochromatic segments was the same as that in the euchromatic segments in all NaCl concentrations and in MgCl2 concentrations up to 0.4 mM. In higher MgCl2 concentrations the heterochromatin remained more compact than the euchromatin and consisted of 37-nm-thick fibers in 0.6 mM MgCl2 and of 65-nm-thick fibers in 1.0 mM MgCl2. After the 37-nm and the 65-nm fibers had been dispersed in Mg2+-free solutions they could be recondensed by incubation in 0.6 mM and 1.0 mM MgCl2, respectively. It is concluded that a Mg2+-sensitive component of the heterochromatin is responsible for the folding of the nucleosome chain to heterochromatin-specific supranucleosomal structures.  相似文献   

16.
The global increase in the application rate of road salts such as sodium chloride (NaCl) has led to concern about their negative effects on roadside habitats and freshwater ecosystems. To reduce the application rate of NaCl and minimize the ecological effects of road salts, transportation agencies are continuously seeking alternative salts such as magnesium chloride (MgCl2) and organic additives such as beet juice and distillation byproducts. Yet, there is remarkably little information about how these road salt alternatives and additives affect aquatic communities, including their effects on mosquito populations. Nonetheless, understanding how anthropogenic factors such as road salts and salt additives affect mosquito populations could help minimize threats to human health, especially in urban environments. We used outdoor, freshwater mesocosms to experimentally investigate how the road salt MgCl2 and two organic additives affect mosquito Culex restuans survival and emergence. Additionally, we measured changes to abiotic aspects of the environment that could affect mosquito larvae during development. We found that increased concentrations of MgCl2 reduced mosquito survival while organic additives increased food resources that, in turn, reduced the average time to emergence for mosquitoes. Additionally, the organic additives reduced dissolved oxygen (DO) to hypoxic levels, which might negatively affect mosquito predators such as fish. In the absence of toxic concentrations of MgCl2 or other salts, reduced predation coupled with the faster emergence times, means that organic additives, might increase mosquito population size. More comprehensive studies of multi‐trophic interactions in freshwater ecosystems should be conducted before agencies promote the application of alternative road salts and road salt additives.  相似文献   

17.
Effects of osmotic tension, salinity and alkalinity were studied on seed germination of three grasses of Karnal-Kurukshetra region with a view to evaluating their capacity to establish through seeds in saline and alkaline environments. Experiments were conducted under controlled conditions in petri dishes lined with blotting papers that were wetted with non-ionic osmotic solutions of mannitol (–2.5 to –15 bars); salinized solutions of NaCl, Na2SO4, MgCl2 and CaSO4 (Electrical conductivity, EC, ranging from 4 to 16 dS/m), alkaline solutions of Na2CO3 (pH 9 to 10) and also in dishes filled with alkali soil grades of the same pH range. Seed germination of all the three grasses was observed to be delayed and finally suppressed by the stress conditions, magnitude of reduction being related to the kind and level of stress as well as to the species. WhileSorghum halepense showed a strikingly superior stress-resistance,Panicum miliare did not appear to be suited to establishment through seeds.Diplachne fusca, on the other hand, was found to be remarkably adapted to alkalinity.  相似文献   

18.
The response of cyanobacteria to a changing osmotic environment includes the accumulation of organic osmolytes such as glucosylglycerol. The activation of the enzymes involved in glucosylglycerol synthesis [glucosylglycerol-phosphate synthase (GGPS) and glucosylglycerol-phosphate phosphatase (GGPP)] in Synechocystis sp. strain PCC 6803 by various salts and salt concentrations was investigated in vitro. GGPS seemed to be the target for salt-mediated regulation of glucosylglycerol synthesis in vitro. GGPS activation was dependent on the concentration of NaCl, and a sigmoidal plot was obtained. Sensitivity to NaCl was markedly enhanced by low Mg+2 concentrations (optimal at 4 mM), but Mg2+ was not absolutely necessary for the Na+ stimulation. As in the case of NaCl, other salts (including MgCl2) stimulated GGPS. The relative order of GGPS activation in the presence of chloride by the cations at constant ionic strength was Li+ > Na+ > K+, Mg2+ Mn2+. No absolute dependence on ionic strength was observed in Mg2+/Na+-exchange experiments. The degree of activation by ions at various concentrations was positively related to the increasing destabilizing properties of the cations according to the Hofmeister rule, where chaotropic cations are most efficient. Cations were responsible for activation since chaotropic anions counteracted the activating effect of cations. Received: 10 August 1998 / Accepted: 11 November 1998  相似文献   

19.
1. Permeability to water in unfertilized eggs of the sea urchin, Arbacia punctulata, is found to be greater in hypotonic solutions of dextrose, saccharose and glycocoll than in sea water of the same osmotic pressure. 2. The addition to dextrose solution of small amounts of CaCl2 or MgCl2 restores the permeability approximately to the value obtained in sea water. 3. This effect of CaCl2 and MgCl2 is antagonized by the further addition of NaCl or KCl. 4. It is concluded that the NaCl and KCl tend to increase the permeability of the cell to water, CaCl2 and MgCl2 to decrease it. 5. The method here employed can be used for quantitative study of salt antagonism.  相似文献   

20.

Background

Extracellular dissolved DNA has been demonstrated to be present in many terrestrial and aquatic environments, actively secreted, or released by decaying cells. Free DNA has the genetic potential to be acquired by living competent cells by horizontal gene transfer mediated by natural transformation. The aim of this work is to study the persistence of extracellular DNA and its biological transforming activity in extreme environments like the deep hypersaline anoxic lakes of the Mediterranean Sea. The brine lakes are separated from the upper seawater by a steep chemocline inhabited by stratified prokaryotic networks, where cells sinking through the depth profile encounter increasing salinity values and osmotic stress.

Results

Seven strains belonging to different taxonomic groups isolated from the seawater-brine interface of four hypersaline lakes were grown at medium salinity and then incubated in the brines. The osmotic stress induced the death of all the inoculated cells in variable time periods, between 2 hours and 144 days, depending on the type of brine rather than the taxonomic group of the strains, i.e. Bacillaceae or gamma-proteobacteria. The Discovery lake confirmed to be the most aggressive environment toward living cells. In all the brines and in deep seawater dissolved plasmid DNA was substantially preserved for a period of 32 days in axenic conditions. L'Atalante and Bannock brines induced a decrease of the supercoiled form up to 70 and 40% respectively; in the other brines only minor changes in plasmid conformation were observed. Plasmid DNA after incubation in the brines maintained the capacity to transform naturally competent cells of Acinetobacter baylii strain BD413.

Conclusion

Free dissolved DNA is likely to be released by the lysis of cells induced by osmotic stress in the deep hypersaline anoxic lakes. Naked DNA was demonstrated to be preserved and biologically active in these extreme environments, and hence could constitute a genetic reservoir of traits acquirable by horizontal gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号