首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncultivated microbial clades (‘microbial dark matter’) are inferred to play important but uncharacterized roles in nutrient cycling. Using Antarctic lake (Ace Lake, Vestfold Hills) metagenomes, 12 metagenome-assembled genomes (MAGs; 88%–100% complete) were generated for four ‘dark matter’ phyla: six MAGs from Candidatus Auribacterota (=Aureabacteria, SURF-CP-2), inferred to be hydrogen- and sulfide-producing fermentative heterotrophs, with individual MAGs encoding bacterial microcompartments (BMCs), gas vesicles, and type IV pili; one MAG (100% complete) from Candidatus Hinthialibacterota (=OLB16), inferred to be a facultative anaerobe capable of dissimilatory nitrate reduction to ammonia, specialized for mineralization of complex organic matter (e.g. sulfated polysaccharides), and encoding BMCs, flagella, and Tad pili; three MAGs from Candidatus Electryoneota (=AABM5-125-24), previously reported to include facultative anaerobes capable of dissimilatory sulfate reduction, and here inferred to perform sulfite oxidation, reverse tricarboxylic acid cycle for autotrophy, and possess numerous proteolytic enzymes; two MAGs from Candidatus Lernaellota (=FEN-1099), inferred to be capable of formate oxidation, amino acid fermentation, and possess numerous enzymes for protein and polysaccharide degradation. The presence of 16S rRNA gene sequences in public metagenome datasets (88%–100% identity) suggests these ‘dark matter’ phyla contribute to sulfur cycling, degradation of complex organic matter, ammonification and/or chemolithoautotrophic CO2 fixation in diverse global environments.  相似文献   

2.

Members of the proposed phylum ‘Candidatus Poribacteria’ are among the most abundant microorganisms in the highly diverse microbiome of the sponge mesohyl. Genomic and phylogenetic characteristics of this proposed phylum are barely known. In this study, we analyzed metagenome-assembled genomes (MAGs) obtained from the coral reef excavating sponge Thoosa mismalolli from the Mexican Pacific Ocean. Two MAGs were extracted and analyzed together with 32 MAGs and single-amplified genomes (SAGs) obtained from NCBI. The phylogenetic tree based on the sequences of 139 single-copy genes (SCG) showed two clades. Clade A (23 genomes) represented 67.7% of the total of the genomes, while clade B (11 genomes) comprised 32.3% of the genomes. The Average Nucleotide Identity (ANI) showed values between 66 and 99% for the genomes of the proposed phylum, and the pangenome of genomes revealed a total of 37,234 genes that included 1722 core gene. The number of genes used in the phylogenetic analysis increased from 28 (previous studies) to 139 (this study), which allowed a better resolution of the phylogeny of the proposed phylum. The results supported the two previously described classes, ‘Candidatus Entoporibacteria’ and ‘Candidatus Pelagiporibacteria’, and the genomes SB0101 and SB0202 obtained in this study belong to two new species of the class ‘Candidatus Entoporibacteria’. This is the first comparative study that includes MAGs from a non-sponge host (Porites lutea) to elucidate the taxonomy of the poorly known Candidatus phylum in a polyphasic approach. Finally, our study also contributes to the sponge microbiome project by reporting the first MAGs of the proposed phylum ‘Candidatus Poribacteria isolated from the excavating sponge T. mismalolli.

  相似文献   

3.
Recent culture‐based studies demonstrate the distinctiveness of the microbial eukaryote biota of very hypersaline environments. In contrast, microscopy‐based faunistic studies suggest that the biota of habitats of more moderate hypersalinity (60–150‰) overlaps substantially with that of marine environments, but this has barely been studied with modern techniques. To investigate the diversity and salinity tolerance range of these organisms, eight cultures of heterotrophic stramenopiles were established from (or from nearby) moderately hypersaline locations. These isolates represent five independent groups; Groups A, B and C are bicosoecids; Groups D and E belong to Placididea. One isolate (Group A) is a strain of the widespread marine species Cafeteria roenbergensis, and cannot grow above 100‰ salinity. The other isolates – Groups B–E – can all grow at 150–175‰ salinities and are probably moderate halophiles. Groups B–E all represent previously unsequenced species or even genera, although Group B is the sister group of the borderline extreme halophile Halocafeteria. The high level of novelty en countered suggests that moderately hypersaline environments may harbour a heterotrophic stramenopile biota distinct from that of marine environments. Interestingly, our new isolates are all most closely related to marine or halophilic forms, and our phylogenies show large clades defined by saline/non‐saline habitats within bicosoecids, placidomonads and related lineages. In particular, most freshwater/soil bicosoecids form one well‐supported clade. The sole major exception is Bicosoeca, which is intermixed with marine environmental sequences originally referred to as ‘MAST‐13’, which are from brackish water, not typical seawater. It seems that the freshwater/marine barrier has been crossed very few times in the evolutionary history of these heterotrophic stramenopile flagellates.  相似文献   

4.
The Adelgidae (Insecta: Hemiptera), a small group of insects, are known as severe pests on various conifers of the northern hemisphere. Despite of this, little is known about their bacteriocyte‐associated endosymbionts, which are generally important for the biology and ecology of plant sap‐sucking insects. Here, we investigated the adelgid species complexes Adelges laricis/tardus, Adelges abietis/viridis and Adelges cooleyi/coweni, identified based on their coI and ef1alpha genes. Each of these insect groups harboured two phylogenetically different bacteriocyte‐associated symbionts belonging to the Betaproteobacteria and the Gammaproteobacteria, respectively, as inferred from phylogenetic analyses of 16S rRNA gene sequences and demonstrated by fluorescence in situ hybridization. The betaproteobacterial symbionts of all three adelgid complexes (‘Candidatus Vallotia tarda’, ‘Candidatus Vallotia virida’ and ‘Candidatus Vallotia cooleyia’) share a common ancestor and show a phylogeny congruent with that of their respective hosts. Similarly, there is evidence for co‐evolution between the gammaproteobacterial symbionts (‘Candidatus Profftia tarda’, ‘Candidatus Profftia virida’) and A. laricis/tardus and A. abietis/viridis. In contrast, the gammaproteobacterial symbiont of A. cooleyi/coweni (‘Candidatus Gillettellia cooleyia’) is different from that of the other two adelgids but shows a moderate relationship to the symbiont ‘Candidatus Ecksteinia adelgidicola’ of A. nordmannianae/piceae. All symbionts were present in all adelgid populations and life stages analysed, suggesting vertical transmission from mother to offspring. In sharp contrast to their sister group, the aphids, adelgids do not consistently contain a single obligate (primary) symbiont but have acquired phylogenetically different bacterial symbionts during their evolution, which included multiple infections and symbiont replacement.  相似文献   

5.
Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon ‘Candidatus Nanohalobium constans’. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea–host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.  相似文献   

6.
Terrestrial geothermal ecosystems are hostile habitats, characterized by large emissions of environmentally relevant gases such as CO2, CH4, H2S and H2. These conditions provide a niche for chemolithoautotrophic microorganisms. Methanotrophs of the phylum Verrucomicrobia, which inhabit these ecosystems, can utilize these gases and grow at pH levels below 1 and temperatures up to 65°C. In contrast, methanotrophs of the phylum Proteobacteria are primarily found in various moderate environments. Previously, novel verrucomicrobial methanotrophs were detected and isolated from the geothermal soil of the Favara Grande on the island of Pantelleria, Italy. The detection of pmoA genes, specific for verrucomicrobial and proteobacterial methanotrophs in this environment, and the partially overlapping pH and temperature growth ranges of these isolates suggest that these distinct phylogenetic groups could coexist in the environment. In this report, we present the isolation and characterization of a thermophilic and acid-tolerant gammaproteobacterial methanotroph (family Methylococcaceae) from the Favara Grande. This isolate grows at pH values ranging from 3.5 to 7.0 and temperatures from 35°C to 55°C, and diazotrophic growth was demonstrated. Its genome contains genes encoding particulate and soluble methane monooxygenases, XoxF- and MxaFI-type methanol dehydrogenases, and all enzymes of the Calvin cycle. For this novel genus and species, we propose the name ‘Candidatus Methylocalor cossyra’ CH1.  相似文献   

7.
The phloem limited bacterium ‘Candidatus Liberibacter africanus’ is associated with citrus greening disease in South Africa. This bacterium has been identified solely from commercial citrus in Africa and the Mascarene islands, and its origin may lie within an indigenous rutaceous host from Africa. Recently, in determining whether alternative hosts of Laf exist amongst the indigenous rutaceous hosts of its triozid vector, Trioza erytreae, three novel subspecies of Laf were identified i.e. ‘Candidatus Liberibacter africanus subsp. clausenae’, ‘Candidatus Liberibacter africanus subsp. vepridis’ and ‘Candidatus Liberibacter africanus subsp. zanthoxyli’ in addition to the formerly identified ‘Candidatus Liberibacter africanus subsp. capensis’. The current study expands upon the range of indigenous rutaceous tree species tested for liberibacters closely related to Laf and its subspecies. A collection of 121 samples of Teclea and Oricia species were sampled from Oribi Gorge and Umtamvunu nature reserves in KwaZulu Natal. Total DNA was extracted and the presence of liberibacters from these samples determined using a generic liberibacter TaqMan real-time PCR assay. Liberibacters from positive samples were further characterised through amplification and sequencing of the 16S rRNA, outer-membrane protein (omp) and 50S ribosomal protein L10 (rplJ) genes. A single Teclea gerrardii specimen tested positive for a liberibacter and, through phylogenetic analyses of the three genes sequenced, was shown to be unique, albeit closely related to ‘Ca. L. africanus’ and ‘Ca. L. africanus subsp. zanthoxyli’. We propose that this newly identified liberibacter be named ‘Candidatus Liberibacter africanus subsp. tecleae’.  相似文献   

8.
To extend the knowledge of anaerobic ammonium oxidation (anammox) habitats, bacterial communities were examined in two hypersaline sulphidic basins in Eastern Mediterranean Sea. The 2 m thick seawater–brine haloclines of the deep anoxic hypersaline basins Bannock and L’Atalante were sampled in intervals of 10 cm with increasing salinity. 15N isotope pairing incubation experiments showed the production of 29N2 and 30N2 gases in the chemoclines, ranging from 6.0 to 9.2 % salinity of the L’Atalante basin. Potential anammox rates ranged from 2.52 to 49.65 nmol N2 L?1 day?1 while denitrification was a major N2 production pathway, accounting for more than 85.5 % of total N2 production. Anammox-related 16S rRNA genes were detected along the L’Atalante and Bannock haloclines up to 24 % salinity, and the amplification of the hydrazine synthase genes (hzsA) further confirmed the presence of anammox bacteria in Bannock. Fluorescence in situ hybridisation and sequence analysis of 16S rRNA genes identified representatives of the marine anammox genus ‘Candidatus Scalindua’ and putatively new operational taxonomic units closely affiliated to sequences retrieved in marine environments that have documented anammox activity. ‘Scalindua brodae’ like sequences constituted up to 84.4 % of the sequences retrieved from Bannock. The anammox community in L’Atalante was different than in Bannock and was stratified according to salinity increase. This study putatively extends anammox bacterial habitats to extremely saline sulphidic ecosystems.  相似文献   

9.
Severe growth abnormalities, including leaf yellowing, sprout proliferation and flower virescence and phyllody, were found on Brassica rapa subsp. pekinensis plants in Poland. The presence of phytoplasma in naturally infected plants was demonstrated by polymerase chain reaction assay employing phytoplasma universal P1/P7 followed by R16F2n/R16R2 primer pairs. The detected phytoplasma was identified using restriction fragment length polymorphism analysis (RFLP) of the 16S rRNA gene fragment with AluI, HhaI, MseI and RsaI endonucleases. After enzymatic digestion, all tested samples showed restriction pattern similar to that of ‘Candidatus phytoplasma asteris’. Nested PCR‐amplified products, obtained with primers R16F2n/R16R2, were sequenced. Sequences of the 16S rDNA gene fragment of analysed phytoplasma isolates were nearly identical. They revealed high nucleotide sequence identity (>98%) with corresponding sequences of other phytoplasma isolates from subgroup 16SrI‐B, and they were classified as members of ‘Candidatus phytoplasma asteris’. This is the first report of the natural occurrence of phytoplasma‐associated disease in plants of Chinese cabbage.  相似文献   

10.
Candidatus Magnetobacterium bavaricum’ is unusual among magnetotactic bacteria (MTB) in terms of cell size (8–10 µm long, 1.5–2 µm in diameter), cell architecture, magnetotactic behaviour and its distinct phylogenetic position in the deep‐branching Nitrospira phylum. In the present study, improved magnetic enrichment techniques permitted high‐resolution scanning electron microscopy and energy dispersive X‐ray analysis, which revealed the intracellular organization of the magnetosome chains. Sulfur globule accumulation in the cytoplasm point towards a sulfur‐oxidizing metabolism of ‘Candidatus M. bavaricum’. Detailed analysis of ‘Candidatus M. bavaricum’ microhabitats revealed more complex distribution patterns than previously reported, with cells predominantly found in low oxygen concentration. No correlation to other geochemical parameters could be observed. In addition, the analysis of a metagenomic fosmid library revealed a 34 kb genomic fragment, which contains 33 genes, among them the complete rRNA gene operon of ‘Candidatus M. bavaricum’ as well as a gene encoding a putative type IV RubisCO large subunit.  相似文献   

11.
Like other plant sap‐sucking insects, planthoppers within the family Cixiidae (Insecta: Hemiptera: Fulgoromorpha) host a diversified microbiota. We report the identification and first molecular characterization of symbiotic bacteria in cixiid planthoppers (tribe: Pentastirini). Using universal eubacterial primers we first screened the eubacterial 16S rRNA sequences in Pentastiridius leporinus (Linnaeus) with PCR amplification, cloning, and restriction fragment analysis. We identified three main 16S rRNA sequences that corresponded to a Wolbachia bacterium, a plant pathogenic bacterium, and a novel gammaproteobacterial symbiont. A fourth bacterial species affiliated with ‘Candidatus Sulcia muelleri’ was detected in PCR assays using primers specific for the Bacteroidetes. Within females of two selected cixiid planthoppers, P. leporinus and Oliarus filicicola, fluorescence In situ hybridization analysis and transmission electron microscopy observations showed that ‘Ca. Sulcia muelleri’ and the novel gammaproteobacterial symbiont were housed in separate bacteriomes. Phylogenetic analysis revealed that both of these symbionts occurred in at least four insect genera within the tribe Pentastirini. ‘Candidatus Purcelliella pentastirinorum’ was proposed as the novel gammaproteobacterial symbiont.  相似文献   

12.
Propionate can be directly oxidized anaerobically with sulfate as e-acceptor at haloalkaline conditions either incompletely to acetate (an example is Desulfobulbus alkaliphilus), or completely (for example by the members of genus Desulfonatronobacter). An enrichment with propionate at methanogenic conditions (without sulfate) inoculated with mixed sediments from hypersaline soda lakes in Kulunda Steppe (Altai, Russia) resulted in a domination of a new member of Syntrophobacteraceae (Deltaproteobacteria) in a consortium with the haloalkaliphilic lithotrophic methanogen Methanocalculus alkaliphilus. Transfer of this culture to a medium containing propionate as e-donor and sulfate as e-acceptor resulted in a disappearance of the methanogen and sulfide formation by the bacterial component, finally isolated into a pure culture at these conditions. Strain APr1 formed a distinct phylogenetic lineage within the family Syntrophobacteraceae, being equally distant from its members at the genus level. Phenotypically, strain APr1 resembled the species of the genus Syntrophobacter with substrate spectrum restricted to propionate and propanol utilized with sulfate, sulfite and thiosulfate as the e-acceptors. Propionate is oxidized incompletely to acetate. It is a moderately salt-tolerant (max. 1.2 M Na+) obligate alkaliphile (pH opt. 10). The isolate is proposed to be classified as a new candidate genus and species ‘Candidatus Desulfonatronobulbus propionicus’.  相似文献   

13.
Regeneration from rhizome fragments of Agropyron repens   总被引:1,自引:0,他引:1  
Experiments were done with rhizome fragments of Agropyron repens with or without ‘late spring dormancy’. Increasing concentrations of KN03 from 1 to 210 ppm successively increased the percentage of buds released from dormancy, but the restriction of shoot extension was significantly lessened only when concentrations of nitrogen were 50 ppm or more. Solutions of sodium nitrite, ammonium chloride and glutamic acid with equal nitrogen contents were equally effective in releasing buds from dormancy. Larger amounts of nitrogen were required to stimulate growth in basal buds, than in apical buds. GA3, and chilling at – 2 oC slightly increased the percentage of buds growing but did not significantly affect the amount of extension growth, while ethephon (2-chloroethylphosphonic acid) had no effect. The restoration of regenerative capacity was associated with increased utilization of rhizome sugars. In single-node rhizome fragments with ‘late spring dormancy’, chilling for 2 wk slightly increased the regenerative capacity but chilling for longer periods decreased it, possibly because respiration during the protracted period of chilling depleted rhizome reserves. Chilling also increased the utilization of rhizome carbohydrates during subsequent growth. Node position affected regenerative capacity: buds from the apical end of the rhizomes were found to have the highest regenerative capacity, this being associated with their greater nitrogen content. Because the name ‘late spring dormancy’ seems to be inappropriate for this phenomena, the term ‘Restricted Regenerative Capacity’ is proposed.  相似文献   

14.
Anaerobic strains affiliated with a novel order‐level lineage of the Phycisphaerae class were retrieved from the suboxic zone of a hypersaline cyanobacterial mat and anoxic sediments of solar salterns. Genome sequences of five isolates were obtained and compared with metagenome‐assembled genomes representing related uncultured bacteria from various anoxic aquatic environments. Gene content surveys suggest a strictly fermentative saccharolytic metabolism for members of this lineage, which could be confirmed by the phenotypic characterization of isolates. Genetic analyses indicate that the retrieved isolates do not have a canonical origin of DNA replication, but initiate chromosome replication at alternative sites possibly leading to an accelerated evolution. Further potential factors driving evolution and speciation within this clade include genome reduction by metabolic specialization and rearrangements of the genome by mobile genetic elements, which have a high prevalence in strains from hypersaline sediments and mats. Based on genetic and phenotypic data a distinct group of strictly anaerobic heterotrophic planctomycetes within the Phycisphaerae class could be assigned to a novel order that is represented by the proposed genus Sedimentisphaera gen. nov. comprising two novel species, S. salicampi gen. nov., sp. nov. and S. cyanobacteriorum gen. nov., sp. nov.  相似文献   

15.
Aims: To test the effect of auxin‐treatment on plant pathogenic phytoplasmas and phytoplasma‐infected host. Methods and Results: In vitro grown periwinkle shoots infected with different ‘Candidatus Phytoplasma’ species were treated with indole‐3‐acetic acid (IAA) or indole‐3‐butyric acid (IBA). Both auxins induced recovery of phytoplasma‐infected periwinkle shoots, but IBA was more effective. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. Two ‘Candidatus Phytoplasma’ species, ‘Ca. P. pruni’ (strain KVI, clover phyllody from Italy) and ‘Ca. P. asteris’ (strain HYDB, hydrangea phyllody), were susceptible to auxin‐treatment and undetected by nested PCR or detected only in the second nested PCR in the host tissue. ‘Ca. P. solani’ (strain SA‐I, grapevine yellows) persisted in the host tissue despite the obvious recovery of the host plant and was always detected in the direct PCR. Conclusions: Both auxins induced recovery of phytoplasma‐infected plants and affected tested ‘Candidatus Phytoplasma’ species in the same manner, implying that the mechanism involved in phytoplasma elimination/survival is common to both, IAA and IBA. Significance and Impact of the Study: The results imply that in the case of some ‘Candidatus Phytoplasma’ species, IBA‐treatment could be used to eliminate phytoplasmas from in vitro grown Catharanthus roseus shoots.  相似文献   

16.
Scale insects are commonly associated with obligate, intracellular microorganisms which play important roles in complementing their hosts with essential nutrients. Here we characterized the symbiotic system of Greenisca brachypodii, a member of the family Eriococcidae. Histological and ultrastructural analyses have indicated that G. brachypodii is stably associated with coccoid and rod‐shaped bacteria. Phylogenetic analyses have revealed that the coccoid bacteria represent a sister group to the secondary symbiont of the mealybug Melanococcus albizziae, whereas the rod‐shaped symbionts are close relatives of Arsenophonus symbionts in insects – to our knowledge, this is the first report of the presence of Arsenophonus bacterium in scale insects. As a comparison of 16S and 23S rRNA genes sequences of the G. brachypodii coccoid symbiont with other gammaprotebacterial sequences showed only low similarity (~90%), we propose the name ‘Candidatus Kotejella greeniscae’ for its tentative classification. Both symbionts are transovarially transmitted from one generation to the next. The infection takes place in the neck region of the ovariole. The bacteria migrate between follicular cells, as well as through the cytoplasm of those cells to the perivitelline space, where they form a characteristic ‘symbiont ball’. Our findings provide evidence for a polyphyletic origin of symbionts of Eriococcidae.  相似文献   

17.
A hallmark of the SUP05 clade of marine Gammaproteobacteria is the ability to use energy obtained from reduced inorganic sulfur to fuel autotrophic fixation of carbon using RuBisCo. However, some SUP05 also have the genetic potential for heterotrophic growth, raising questions about the roles of SUP05 in the marine carbon cycle. We used genomic reconstructions, physiological growth experiments and proteomics to characterize central carbon and energy metabolism in Candidatus Thioglobus singularis strain PS1, a representative from the SUP05 clade that has the genetic potential for autotrophy and heterotrophy. Here, we show that the addition of individual organic compounds and 0.2 μm filtered diatom lysate significantly enhanced the growth of this bacterium. This positive growth response to organic substrates, combined with expression of a complete TCA cycle, heterotrophic pathways for carbon assimilation, and methylotrophic pathways for energy conversion demonstrate strain PS1's capacity for heterotrophic growth. Further, our inability to verify the expression of RuBisCO suggests that carbon fixation was not critical for growth. These results highlight the metabolic diversity of the SUP05 clade that harbours both primary producers and consumers of organic carbon in the oceans and expand our understanding of specific pathways of organic matter oxidation by the heterotrophic SUP05.  相似文献   

18.
Little is known about the potential activity of microbial communities in hypersaline sediment ecosystems. Ribosomal tag libraries of DNA and RNA extracted from the sediment of Lake Strawbridge (Western Australia) revealed bacterial and archaeal operational taxonomic units (OTUs) with high RNA/DNA ratios providing evidence for the presence of ‘rare’ but potentially “active” taxa. Among the ‘rare’ bacterial taxa Halomonas, Salinivibrio and Idiomarina showed the highest protein synthesis potential. Rare but ‘active’ archaeal OTUs were related to the KTK 4A cluster and the Marine-Benthic-Groups B and D. We present the first molecular analysis of the microbial diversity and protein synthesis potential of rare microbial taxa in a hypersaline sediment ecosystem.  相似文献   

19.
Oxidation of nitrite to nitrate is an important process in the global nitrogen cycle. Recent molecular biology-based studies have revealed that the widespread nitrite-oxidizing bacteria (NOB) belonging to the genus ‘Candidatus Nitrotoga’ may be highly important for the environment. However, the insufficient availability of pure Nitrotoga cultures has limited our understanding of their physiological and genomic characteristics. Here, we isolated the ‘Ca. Nitrotoga’ sp. strain AM1P, from a previously enriched Nitrotoga culture, using an improved isolation strategy. Although ‘Ca. Nitrotoga’ have been recognized as cold-adapted NOB, the strain AM1P had a slightly higher optimum growth temperature at 23°C. Strain AM1P showed a pH optimum of 8.3 and was not inhibited even at high nitrite concentrations (20 mM). We obtained the complete genome of the strain and compared the genome profile to five previously sequenced ‘Ca. Nitrotoga’ strains. Comparative genomics suggested that lactate dehydrogenase may be only encoded in the strain AM1P and closely related genomes. While the growth yield of AM1P did not change, we observed faster growth in the presence of lactate in comparison to purely chemolithoautotrophic growth. The characterization of the new strain AM1P sheds light on the physiological adaptation of this environmentally important, but understudied genus ‘Ca. Nitrotoga’.  相似文献   

20.
The prophage/phage region in the genome of ‘Candidatus Liberibacter asiaticus’, an alpha‐proteobacterium associated with citrus Huanglongbing, included many valuable loci for genetic diversity studies. Previously, a mosaic genomic region (CLIBASIA_05640 to CLIBASIA_05650) was characterized, and this revealed inter‐ and intracontinental variations of ‘Ca. L. asiaticus’. In this study, 267 ‘Ca. L. asiaticus’ isolates collected from eight provinces in China were analysed with a primer set flanking the same mosaic region plus downstream sequence. While most amplicon sizes ranged from 1400 to 2000 bp, an amplicon of 550 bp (S550) was found in 14 samples collected from south‐western China. Sequence analyses showed that S550 was the result of a 1033 bp deletion which included the previously known mosaic region. The genetic nature of the deletion event remains unknown. The regional restriction of S550 suggests that the ‘Ca. L. asiaticus’ population from south‐western China is different from those in eastern China. The small and easy‐to‐detect S550 amplicon could serve as a molecular marker for ‘Ca. L. asiaticus’ epidemiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号