共查询到20条相似文献,搜索用时 0 毫秒
1.
ROBERT S. BOYD 《Insect Science》2007,14(3):201-205
Nickel hyperaccumulator plants contain unusually elevated levels of Ni (〉 1 000 μg Ni/g). Some insect herbivores, including Lygus hesperus (Western tarnished plant bug), have been observed feeding on the California Ni hyperaccumulator Streptanthus polygaloides. This bug may be able to utilize S. polygaloides as a host either through its feeding behavior or by physiological tolerance of Ni. This experiment determined the Ni tolerance of L hesperus by offering insects artificial diet amended with 0, 0.4, 1, 2, 4.5, 10, 20 and 40 mmol Ni/L and recording survival. Survival varied due to Ni concentration, with diets containing 10 mmol Ni/L and greater resulting in significantly lower survival compared to the control (0 mmol Ni/L) treatment. Insects tolerated diet containing as much as 4.5 mmol Ni/L, a relatively elevated Ni concentration. I conclude that L hesperus can feed on S. polygaloides because it is Ni-tolerant, probably due to physiological mechanisms that provide it with resistance to plant chemical defenses including elemental defenses such as hyperaccumulated Ni. 相似文献
2.
Robert S. Boyd 《Insect Science》2009,16(1):19-31
Insects can vary greatly in whole‐body elemental concentrations. Recent investigations of insects associated with Ni hyperaccumulator plants have identified insects with relatively elevated whole‐body Ni levels. Evaluation of the limited data available indicates that a whole‐body Ni concentration of 500 μg Ni/g is exceptional: I propose that an insect species with a mean value of 500 μg Ni/g or greater, in either larval/nymphal or adult stages, be considered a “high‐Ni insect”. Using the 500 μg Ni/g criterion, 15 species of high‐Ni insects have been identified to date from studies in Mpumalanga (South Africa), New Caledonia and California (USA). The highest mean Ni concentration reported is 3 500 μg Ni/g for nymphs of a South African Stenoscepa species (Orthoptera: Pyrgomorphidae). The majority of high‐Ni insects (66%) are heteropteran herbivores. Studies of high‐Ni insect host preference indicate they are monophagous (or nearly so) on a particular Ni hyperaccumulator plant species. Much of the Ni in bodies of these insects is in their guts (up to 66%–75%), but elevated levels have also been found in Malpighian tubules, suggesting efficient elimination as one strategy for dealing with a high‐Ni diet. Tissue levels of Ni are generally much lower than gut concentrations, but up to 1200 μg Ni/g has been reported from exuviae, suggesting that molting may be another pathway of Ni elimination. One ecological function of the high Ni concentration of these insects may be to defend them against natural enemies, but to date only one experimental test has supported this “elemental defense” hypothesis. Community‐level studies indicate that high‐Ni insects mobilize Ni into food webs but that bioaccumulation of Ni does not occur at either plant‐herbivore or herbivore‐predator steps. Unsurprisingly, Ni bioaccumulation indices are greater for high‐Ni insects compared to other insect species that feed on Ni hyperaccumulator plants. There is some evidence of Ni mobilization into food webs by insect visitors to flowers of Ni hyperaccumulator plants, but no high‐Ni insect floral visitors have been reported. 相似文献
3.
4.
Rathinasabapathi B Rangasamy M Froeba J Cherry RH McAuslane HJ Capinera JL Srivastava M Ma LQ 《The New phytologist》2007,175(2):363-369
Brake fern, Pteris vittata, not only tolerates arsenic but also hyperaccumulates it in the frond. The hypothesis that arsenic hyperaccumulation in this fern could function as a defense against insect herbivory was tested. Fronds from control and arsenic-treated ferns were presented to nymphs of the grasshopper Schistocerca americana. Feeding damage was recorded by visual observation and quantification of the fresh weight of frond left uneaten and number of fecal pellets produced over a 2-d period. Grasshopper weight was determined before and after 5 d of feeding. Grasshoppers consumed significantly greater amounts of the frond tissue, produced more fecal pellets and had increased body weight on control plants compared with grasshoppers fed arsenic-treated ferns. Very little or none of the arsenic-treated ferns were consumed indicating feeding deterrence. In a feeding deterrent experiment with lettuce, sodium arsenite at 1.0 mm deterred grasshoppers from feeding whereas 0.1 mm did not. In a choice experiment, grasshoppers preferred to feed on lettuce dipped in water compared with lettuce dipped in 1.0 mm sodium arsenite. Our results show that arsenic hyperaccumulation in brake fern is an elemental defense against grasshopper herbivory. 相似文献
5.
Arthropods (mainly insects) were collected from a forest site that contained at least six species of Ni hyperaccumulators. Whole body Ni analysis was performed for 12 arthropod taxa, two of which were studied at different life cycle stages. We found two Nitolerant insects. The pentatomid heteropteran Utana viridipuncta, feeding on fruits of the Ni hyperaccumulator Hybanthus austrocaledonicus, contained a mean of 2 600 μNi/g in nymphs and 750 μNi/g in adults. The tephritid fly Bactrocera psidii, feeding on pulp of Sebertia acuminata fruits that contained 6 900 μNi/g, contained 420 μNi/g as larvae that had evacuated their guts and significantly less (65 μNi/g) as adults. European honeybees (Apis mellifera) visiting flowers of the Ni hyperaccumulator H. austrocaledonicus contained significantly more Ni (8‐fold more) than those collected from flowers of Myodocarpus fraxinifolius, a non‐hyperaccumulator. Our results show that some insects feed on Ni hyperaccumulator plants and that their feeding mobilizes Ni into local food webs. 相似文献
6.
Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae) 总被引:2,自引:0,他引:2
Plants use chemical defences to reduce damage from herbivores and the effectiveness of these defences can be altered by biotic and abiotic factors, such as herbivory and soil resource availability. Streptanthus polygaloides , a nickel (Ni) hyperaccumulator, possesses both Ni-based defences and organic defences (glucosinolates), but the extent to which these defences interact and respond to environmental conditions is unknown. S. polygaloides plants were grown on high-Ni and low-Ni soil and concentrations of Ni and glucosinolates were compared with those of the congeneric non-hyperaccumulator, S. insignus spp. insignus , grown under the same conditions. Ni contents were highest (4000 μg g−1 dry tissue) in S. polygaloides plants grown on high-Ni soil. Glucosinolate content was significantly higher in S. insignus than in S. polygaloides suggesting that plants defended by Ni produce a lower concentration of organic defences. In a separate experiment, high-Ni S. polygaloides plants were exposed to simulated herbivory or live folivores to determine the inducibility of Ni-based and organic defences. Contents of Ni were not affected by either herbivory treatment, whereas glucosinolate concentrations were >30% higher in damaged plants. We concluded that the Ni-based defence of S. polygaloides is not induced by herbivory. 相似文献
7.
In Arabidopsis and other Brassicaceae, the enzyme myrosinase (beta-thioglucoside glucohydrolase, TGG) degrades glucosinolates to produce toxins that deter herbivory. A broadly applicable selection for meiotic recombination between tightly linked T-DNA insertions was developed to generate Arabidopsis tgg1tgg2 double mutants and study myrosinase function. Glucosinolate breakdown in crushed leaves of tgg1 or tgg2 single mutants was comparable to that of wild-type, indicating redundant enzyme function. In contrast, leaf extracts of tgg1tgg2 double mutants had undetectable myrosinase activity in vitro, and damage-induced breakdown of endogenous glucosinolates was apparently absent for aliphatic and greatly slowed for indole glucosinolates. Maturing leaves of myrosinase mutants had significantly increased glucosinolate levels. However, developmental decreases in glucosinolate content during senescence and germination were unaffected, showing that these processes occur independently of TGG1 and TGG2. Insect herbivores with different host plant preferences and feeding styles varied in their responses to myrosinase mutations. Weight gain of two Lepidoptera, the generalist Trichoplusia ni and the facultative Solanaceae-specialist Manduca sexta, was significantly increased on tgg1tgg2 double mutants. Two crucifer-specialist Lepidoptera had differing responses. Whereas Plutella xylostella was unaffected by myrosinase mutations, Pieris rapae performed better on wild-type, perhaps due to reduced feeding stimulants in tgg1tgg2 mutants. Reproduction of two Homoptera, Myzus persicae and Brevicoryne brassicae, was unaffected by myrosinase mutations. 相似文献
8.
Ecology of metal hyperaccumulation 总被引:12,自引:3,他引:12
9.
10.
Hassan Ahmadi Massimiliano Corso Michael Weber Nathalie Verbruggen Stephan Clemens 《Plant, cell & environment》2018,41(10):2435-2448
The molecular analysis of metal hyperaccumulation in species such as Arabidopsis halleri offers the chance to gain insights into metal homeostasis and into the evolution of adaptation to extreme habitats. A prerequisite of metal hyperaccumulation is metal hypertolerance. Genetic analysis of a backcross population derived from Arabidopsis lyrata × A. halleri crosses revealed three quantitative trait loci for Cd hypertolerance. A candidate gene for Cdtol2 is AhCAX1, encoding a vacuolar Ca2+/H+ antiporter. We developed a method for the transformation of vegetatively propagated A. halleri plants and generated AhCAX1‐silenced lines. Upon Cd2+ exposure, several‐fold higher accumulation of reactive oxygen species (ROS) was detectable in roots of AhCAX1‐silenced plants. In accordance with the dependence of Cdtol2 on external Ca2+ concentration, this phenotype was exclusively observed in low Ca2+ conditions. The effects of external Ca2+ on Cd accumulation cannot explain the phenotype as they were not influenced by the genotype. Our data strongly support the hypothesis that higher expression of CAX1 in A. halleri relative to other Arabidopsis species represents a Cd hypertolerance factor. We propose a function of AhCAX1 in preventing a positive feedback loop of Cd‐elicited ROS production triggering further Ca2+‐dependent ROS accumulation. 相似文献
11.
12.
Benjamin D. Jaffe Christelle Gudot Michael Ketterer Moh Leng Kok‐Yokomi Gary L. Leibee 《Ecological Entomology》2019,44(4):480-487
1. The consumption of arsenic is toxic to most biota. However, a noctuid caterpillar was recently reported feeding on a plant known to hyperaccumulate arsenic. 2. The aim of this study was to investigate the effects of arsenic‐rich Pteris vittata L. consumption by Callopistria floridensis G., and measure differences in arsenic concentrations at various stages of development (larval and adult), and associated with exuviae and frass. 3. Callopistria floridensis accumulated extraordinary concentrations of arsenic. The relative accumulation of arsenic was highest in exuviae and larvae. Larvae invariably preferred P. vittata grown on low arsenic soil to P. vittata grown on higher soil arsenic concentrations, and appeared able to selectively forage on lower arsenic concentrations within each treatment. 4. These findings show that C. floridensis is tolerant of arsenic, and successfully develops to adulthood containing elevated concentrations of arsenic. Callopistria floridensis represents the only known terrestrial animal capable of accumulating arsenic, and may have developed novel physiological and behavioural adaptations to regulate the negative effects of arsenic. 相似文献
13.
Environmental contamination with metals such as manganese (Mn) and nickel (Ni) often results in elevated concentrations of these metals in plant tissues. At high concentrations, these metals are known to have detrimental effects on certain insect herbivores. Using laboratory bioassays and artificial diet, we investigated the development and survival of a cosmopolitan insect detritivore, Megaselia scalaris (Diptera: Phoridae), exposed to concentrations of Mn and Ni reaching 2600 mg Mn/kg and 5200 mg Ni/kg dry mass (dm) in artificial diet. Surprisingly, Ni and Mn at the concentrations tested did not harm this fly. Treatment groups from diets with 260–2600 mg Mn/kg dm and 1300–5200 mg Ni/kg dm had significantly shorter larval development times, overall times to adult emergence, and both pupariation and pupal eclosion times compared to a control group. Wing length of females, a correlate of adult fitness, was also greater in metal treatment groups. Other measures including rate of egg hatch, percentage of emerging flies that were female, and wing length of male flies, were not significantly different in metal treatment groups. We conclude that Megaselia scalaris is tolerant of exceptionally high levels of Mn and Ni. 相似文献
14.
15.
16.
Peer WA Mahmoudian M Freeman JL Lahner B Richards EL Reeves RD Murphy AS Salt DE 《The New phytologist》2006,172(2):248-260
We report on the second phase of a programme to select a relative of Arabidopsis thaliana for use in large-scale molecular genetic studies of nickel (Ni) and zinc (Zn) hyperaccumulation. We also report on the relatedness among Thlaspi caerulescens accessions and the utility of using O-acetyl-L-serine as a marker for Ni and Zn hyperaccumulation potential. Twenty-seven new accessions of metal-accumulating species collected in the Czech Republic, France, Greece, Italy, Slovenia and the USA during Spring-Summer 2002 were evaluated. The criteria established for selection were hyperaccumulation of metals (Ni and Zn); compact growth habit; reasonable time to flowering; production of > or = 1000 seeds per plant; self-fertility; compact diploid genome; high sequence similarity to A. thaliana; > or = 0.1% transformation efficiency with easy selection. We conclude that the best candidate identified in the first phase was the best candidate overall: T. caerulescens accession St Félix de Pallières. 相似文献
17.
Phytochelatin (PC) synthesis is considered necessary for Cd tolerance in non‐resistant plants, but roles for PCs in hyper‐accumulating species are currently unknown. In the present study, the relationship between PC synthesis and Cd accumulation was investigated in the Cd hyperaccumulator Sedum alfredii Hance. PCs were most abundant in leaves followed by stems, but hardly detected by the reversed‐phase high‐performance liquid chromatography (HPLC) in roots. Both PC synthesis and Cd accumulation were time‐dependent and a linear correlation between the two was established with about 1:15 PCs : Cd stoichiometry in leaves. PCs were found in the elution fractions, which were responsible for Cd peaks in the anion exchange chromatograph assay. About 5% of the total Cd was detected in these elution fractions as PCs were found. Most Cd was observed in the cell wall and intercellular space of leaf vascular cells. These results suggest that PCs do not detoxify Cd in roots of S. alfredii. However, like in non‐resistant plants, PCs might act as the major intracellular Cd detoxification mechanism in shoots of S. alfredii. 相似文献
18.
19.
Jessica J. Armstrong Naoki Takebayashi Diana E. Wolf 《American journal of botany》2020,107(3):489-497