首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The response of Allium cepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R′) and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R′ was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars.  相似文献   

3.
It is widely recognized that arbuscular mycorrhizal fungi (AMF) improve plant growth and nutrient conditions, but their effects can vary from negative to positive depending on AMF species. Since the performance of herbivorous arthropods varies with plant quality, different AMF species should differently affect the density of herbivorous arthropods on plants and the herbivore-induced plant responses. We examined the indirect effects of AMF on the number of spider mites (Tetranychus urticae) and the number of damaged leaves in an outdoor glass-chamber experiment, using Lotus japonicus plants inoculated with one of four different AMF species (Gigaspora margarita, Glomus etunicatum, Gl. intraradices, and Acaulospora longula). Plants with Gi. margarita and A. longula had significantly fewer female mites than plants with Gl. etunicatum and Gl. intraradices, and plants with Gi. margarita had the fewest damaged leaves, followed by plants with A. longula, Gl. intraradices, and Gl. etunicatum. To examine species-specific effects of AMF on herbivore-induced plant responses, we carried out a bioassay with eggs laid by spider mites, and analyses of leaf chemicals (carbon, nitrogen, phosphorus, and total phenolics) using plants subjected or not subjected to herbivory. The bioassay showed that mite egg production and its changes following mite herbivory changed depending on the AMF species. In addition, Principal component analysis for leaf chemicals revealed not only mite-induced changes in leaf chemical composition, but also AMF effects on the herbivore-induced response in a species-specific way. Thus, we need to pay more attention to the species identity of AMF as an important factor in determining the strength of effects of belowground AMF on the performance and/or preferences of aboveground herbivores.  相似文献   

4.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

5.
We examined the role ofarbuscular mycorrhizal fungi (AMF) in thebioprotection of the sand dune grass Leymus arenarius against soil fungi andnematodes. Six soil fungi (Fusariumnivale, Fusarium sp., Cladosporiumherbarum, Cladosporium sp., Phomasp., Sporothrix sp.) and four species ofnematodes (Pratylenchoidesmagnicauda, Paratylenchusmicrodorus, Rotylenchus goodeyi, Merlinius joctus) were isolated from a coastalsand dune in Iceland where a population of L. arenarius was declining in vigour. Acommercial AMF inoculum (Microbio Ltd. England)containing Glomus caledonium, G.fasciculatum, and G. mossae was used.Seedlings of L. arenarius were grownunder controlled conditions in sterile sand andsubjected to the following treatments: (1)control, (2) + AMF, (3) + AMF + soil fungi, (4)+ AMF + nematodes, (5) + AMF + nematodes + soilfungi, (6) + soil fungi, (7) + soil fungi +nematodes, (8) + nematodes. Mycorrhizal plantshad significantly the highest root dry weightof all treatments. Mycorrhizal plants hadsignificantly higher leaf dry weight thanplants in other treatments, with the exceptionof AMF inoculated plants exposed to nematodes. Mycorrhizal plants exposed to soil fungi andnematodes had significantly higher growthparameters except total number of leaves thanAMF inoculated plants exposed to both soilfungi and nematodes. Mycorrhizal plantssubjected to a dual application of soil fungiand nematodes did not vary significantly in anygrowth parameters from plants without AMF thatwere exposed to a dual application of soilfungi and nematodes. This suggests asynergistic effect of soil fungi and nematodesthat break down the protection of AMF againstpathogens. The results are discussed inrelation to plant dynamics of sand duneecosystems.  相似文献   

6.
The effect of arbuscular mycorrhizal fungi (AMF) inoculation and organic slow release fertilizer (OSRF) on photosynthesis, root phosphatase activity, nutrient acquisition, and growth of Ipomoea carnea N. von Jacquin ssp. fistulosa (K. Von Martinus ex J. Choisy) D. Austin (bush morning glory) was determined in a greenhouse study. The AMF treatments consisted of a commercial isolate of Glomus intraradices and a non-colonized (NonAMF) control. The OSRF was applied at 10, 30, and 100 % of the manufacturer’s recommended rate. AMF plants had a higher net photosynthetic rate (P N), higher leaf elemental N, P, and K, and generally greater growth than NonAMF plants. Total colonization levels of AMF plants ranged from 27 % (100 % OSRF) to 79 % (30 % OSRF). Root acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were generally higher in AMF than non-AMF plants. When compared to NonAMF at 100 % OSRF, AMF plants at 30 % OSRF had higher or comparable ACP and ALP activity, higher leaf elemental P, N, Fe, Cu, and Zn, and a greater P N (at the end of the experiment), leading to generally greater growth parameters with the lower fertility in AMF plants. We suggest that AMF increased nutrient acquisition from an organic fertilizer source by enhancing ACP and ALP activity thus facilitating P acquisition, increasing photosynthesis, and improving plant growth.  相似文献   

7.
【目的】解析不同连作年限花魔芋软腐病株、健株根域的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性。【方法】使用AMF 18S SSU rRNA基因特异引物AMV4.5NF/AMDGR对正茬及连作2年和3年的软腐病株、健株魔芋根系和根际土壤DNA扩增建库,通过高通量测序和生物信息学分析探究魔芋软腐病与其根域AMF群落多样性的关系。【结果】魔芋根系具有明显的AMF菌丝、泡囊和丛枝等结构。在相同连作年限条件下,健株根系AMF总侵染率、侵染强度和孢子密度均显著高于病株(P<0.05);在不同连作年限条件下,病株根系AMF总侵染率和侵染强度随连作年限延长而降低。从所有样品中共鉴定到9属53种AMF,其中有49个已知种和4个新种。球囊霉属(Glomus)和类球囊霉属(Claroideoglomus)是AMF群落的优势属,其AMF种分别占总AMF种数的41.5%和26.4%;丰度最高的Paraglomus sp.VTX00308是所有样品的共有种。连作、软腐病及二者的交互作用显著影响根系AMF群落的Shannon指数和Simpson指数及根际土壤AMF的Chao1指数(P<0.05)。通过丰度差异分析发现6个在连作软腐病发生后丰度差异显著的AMF种(P<0.05);NMDS分析表明,不同连作年限的魔芋软腐病株与健株之间的根域AMF菌种组成、相对丰度和群落结构存在差异。相关性分析表明,软腐病发病率和病情指数与魔芋根系和根际土壤AMF的Shannon指数、根系AMF的Chao1和Simpson指数以及AMF总侵染率、侵染强度和孢子密度极显著负相关(P<0.01)。【结论】比对健株,连作魔芋软腐病株根际土壤AMF孢子密度以及根系AMF侵染率、种数和多样性均降低,其群落结构显著改变。  相似文献   

8.
Cuenca  Gisela  De Andrade  Zita  Meneses  Erasmo 《Plant and Soil》2001,231(2):233-241
In this work, we present the results obtained after 9 months of watering with acidic solutions seedlings of Clusia multiflora, inoculated with arbuscular mycorrhizal fungi (AMF). The fungi were isolated from acid and neutral soil. C.multiflora is a tropical woody species that naturally grows on acid soils high in soluble Al. The research evaluated if arbuscular mycorrhizas (AM) could be responsible at least partially for the tolerance to acidity and to aluminum of C.multiflora and if an inoculum of AM fungi (AMF) coming from acid soils contributes more to the tolerance of acidity of C. multiflora than one coming from neutral soils. Results showed that in the absence of AMF (control treatment), the seedlings of C. multiflora did not grow, indicating that this species is highly dependent on AMF. When C. multiflora was exposed to a very acidic solution (pH 3), plants inoculated with AMF from acid soils were taller than those inoculated with AMF from neutral soils. Acidity affected root growth and root length. Plants inoculated with AMF from neutral soils showed thicker roots and lower shoot-root relationships than those inoculated with AMF from acid soils. Acidity did not affect root growth of C. multiflora inoculated with AMF from acid soils even when they were watered with solutions of pH 3. All plants accumulated high quantities of Al in roots (>10000 mg.kg –1), but plants inoculated with AMF from acid soils, accumulated less aluminum in roots than plants from the other treatments. A histochemical study of the distribution of Al in roots showed that in mycorrhizal plants, the aluminum was bound to the cell walls in the mycelium of the fungus, mainly in the vesicles or in auxiliary cells, a fact showed for the first time in this work.  相似文献   

9.
Jason E. Jannot 《Oecologia》2009,161(2):267-277
The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids.  相似文献   

10.
 Plant ability to withstand acidic soil mineral deficiencies and toxicities can be enhanced by root-arbuscular mycorrhizal fungus (AMF) symbioses. The AMF benefits to plants may be attributed to enhanced plant acquisition of mineral nutrients essential to plant growth and restricted acquisition of toxic elements. Switchgrass (Panicum virgatum L.) was grown in pHCa (soil:10 mM CaCl2, 1 : 1) 4 and 5 soil (Typic Hapludult) inoculated with Glomus clarum, G. diaphanum, G. etunicatum, G. intraradices, Gigaspora albida, Gi. margarita, Gi. rosea, and Acaulospora morrowiae to determine differences among AMF isolates for mineral acquisition. Shoots of mycorrhizal (AM) plants had 6.2-fold P concentration differences when grown in pHCa 4 soil and 2.9-fold in pHCa 5 soil. Acquisition trends for the other mineral nutrients essential for plant growth were similar for AM plants grown in pHCa 4 and 5 soil, and differences among AMF isolates were generally higher for plants grown in pHCa 4 than in pHCa 5 soil. Both declines and increases in shoot concentrations of N, S, K, Ca, Mg, Zn, Cu, and Mn relative to nonmycorrhizal (nonAM) plants were noted for many AM plants. Differences among AM plants for N and Mg concentrations were relatively small (<2-fold) and were large (2- to 9-fold) for the other minerals. Shoot concentrations of mineral nutrients did not relate well to dry matter produced or to percentage root colonization. Except for Mn and one AMF isolate, shoot concentrations of Mn, Fe, B, and Al in AM plants were lower than in nonAM plants, and differences among AM plants for these minerals ranged from a low of 1.8-fold for Fe to as high as 6.9-fold for Mn. Some AMF isolates were effective in overcoming acidic soil mineral deficiency and toxicity problems that commonly occur with plants grown in acidic soil. Accepted: 14 June 1999  相似文献   

11.

Background and Aim

Climate change models are limited by lack of baseline data, in particular carbon (C) allocation to – and dynamics within – soil microbial communities. We quantified seasonal C-assimilation and allocation by plants, and assessed how well this corresponds with intraradical arbuscular mycorrhizal fungal (AMF) storage and structural lipids (16:1ω5 NLFA and PLFA, respectively), as well as microscopic assessments of AMF root colonization.

Methods

Coastal Hypochoeris radicata plants were labeled with 13CO2 in February, July and October, and 13C-allocation to fine roots and NLFA 16:1ω5, as well as overall lipid contents and AM colonization were quantified.

Results

C-allocation to fine roots and AMF storage lipids differed seasonally and mirrored plant C-assimilation, whereas AMF structural lipids and AM colonization showed no seasonal variation, and root colonization exceeded 80 % throughout the year. Molecular analyzes of the large subunit rDNA gene indicated no seasonal AMF community shifts.

Conclusions

Plants allocated C to AMF even at temperatures close to freezing, and fungal structures persisted in roots during times of low C-allocation. The lack of seasonal differences in PLFA and AM colonization indicates that NLFA analyses should be used to estimate fungal C-status. The implication of our findings for AM function is discussed.  相似文献   

12.
Three endangered plant species, Plantago atrata and Pulsatilla slavica, which are on the IUCN red list of plants, and Senecio umbrosus, which is extinct in the wild in Poland, were inoculated with soil microorganisms to evaluate their responsiveness to inoculation and to select the most effective microbial consortium for application in conservation projects. Individuals of these taxa were cultivated with (1) native arbuscular mycorrhizal fungi (AMF) isolated from natural habitats of the investigated species, (2) a mixture of AMF strains available in the laboratory, and (3) a combination of AMF lab strains with rhizobacteria. The plants were found to be dependent on AMF for their growth; the mycorrhizal dependency for P. atrata was 91%, S. umbrosus-95%, and P. slavica-65%. The applied inocula did not significantly differ in the stimulation of the growth of P. atrata and S. umbrosus, while in P. slavica, native AMF proved to be the less efficient. We therefore conclude that AMF application can improve the ex situ propagation of these three threatened taxa and may contribute to the success of S. umbrosus reintroduction. A multilevel analysis of chlorophyll a fluorescence transients by the JIP test permitted an in vivo evaluation of plant vitality in terms of biophysical parameters quantifying photosynthetic energy conservation, which was found to be in good agreement with the results concerning physiological parameters. Therefore, the JIP test can be used to evaluate the influence of AMF on endangered plants, with the additional advantage of being applicable in monitoring in a noninvasive way the acclimatization of reintroduced species in nature.  相似文献   

13.
Pastures often experience a pulse of phosphorus (P) when fertilized. We examined the role of arbuscular mycorrhizal fungi (AMF) in the uptake of P from a pulse. Five legumes (Kennedia prostrata, Cullen australasicum, Bituminaria bituminosa, Medicago sativa and Trifolium subterraneum) were grown in a moderate P, sterilized field soil, either with (+AMF) or without (?AMF) addition of unsterilized field soil. After 9–10 weeks, half the pots received 15 mg P kg?1 of soil. One week later, we measured: shoot and root dry weights; percentage of root length colonized by AMF; plant P, nitrogen and manganese (Mn) concentrations; and rhizosphere carboxylates, pH and plant‐available P. The P pulse raised root P concentration by a similar amount in uncolonized and colonized plants, but shoot P concentration increased by 143% in uncolonized plants and 53% in colonized plants. Inoculation with AMF decreased the amount of rhizosphere carboxylates by 52%, raised rhizosphere pH by ~0.2–0.7 pH units and lowered shoot Mn concentration by 38%. We conclude that AMF are not simply a means for plants to enhance P uptake when P is limiting, but also act to maintain shoot P within narrow boundaries and can affect nutrient uptake through their influence on rhizosphere chemistry.  相似文献   

14.
 Two glasshouse experiments were done to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on either Pueraria phaseoloides L. or Desmodium ovalifolium L. plants. The second of the two experiments included three levels of a localised phosphate source in the pots. Alkaline phosphatase (ALP), stained histochemically in the intra-radical mycelium (IRM) of AMF over sequential harvests, did not provide a direct marker for the efficiency of AMF in mobilising phosphorus (P) for plant growth and development. The ability of the extra-radical mycelium (ERM) to scavenge a localised phosphate source, determined by its extraction from buried 35-μm mesh pouches, was dependent on the species of AMF tested. This work indicates that AMF from different genera have unique patterns of mycelial development when forming mycorrhizas with tropical hosts in the presence of a localised phosphate source. AMF also appear to have different mechanisms for the control of P transfer, within the mycelium, to the host. The significance of the architecture of the ERM is discussed as well as the localisation of ALP in the IRM in determining the efficiency of AMF in terms of P accumulation in planta and subsequent growth of plants. Accepted: 19 August 1998  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) can control soilborne diseases such as Fusarium oxysporum f.sp. lycopersici (Fol). Root exudates play an important role in plant–microbe interactions in the rhizosphere, especially, in the initial phase of these interactions. In this work, we focus on (i) elucidating dynamics in root exudation of Solanum lycopersicum L. in an intercropping system due to AMF and/or Fol; (ii) its effect on Fol development in vitro; and (iii) the testing of the root exudate compounds identified in the chromatographic analyses in terms of effects on fungal growth in in vitro assays. GC‐MS analyses revealed an AMF‐dependent increase in sugars and decrease in organic acids, mainly glucose and malate. In the HPLC analyses, an increase in chlorogenic acid was evident in the combined treatment of AMF and Fol, which is to our knowledge the first report about an increase in chlorogenic acid in root exudates of AM plants challenged with Fol compared with plants inoculated with AMF only, clearly indicating changes in root exudation due to AMF and Fol. Root exudates of AMF tomato plants stimulate the germination rate of Fol, whereas the co‐inoculation of AMF and Fol leads to a reduction in spore germination. In the in vitro assays, citrate and chlorogenic acid could be identified as possible candidates for the reduction in Fol germination rate in the root exudates of the AMF+Fol treatment because they proved inhibition at concentrations naturally occurring in the rhizosphere.  相似文献   

16.
The current investigation was carried out to examine the role of arbuscular mycorrhizal fungi (AMF) in alleviating adverse effects of salt stress in Ephedra aphylla. The plants were exposed to 75 and 150 mM sodium chloride (NaCl) stress with and without application of AMF. Salt stress caused significant decrease in chlorophyll and carotenoid contents; however, the application of AMF restored the pigments content in salt-affected plants. Proline, phenols, and lipid peroxidation were increased with increasing concentration of NaCl, but lower accumulation has been reported in plants treated with AMF. NaCl stress also showed increase in different antioxidant enzymes activities (catalase, ascorbate peroxidase, peroxidase, glutathione reductase, and superoxide dismutase), and further increase was observed in plants treated with AMF. The nutrient uptake, Na+ and Na/K ratio increased and potassium and phosphorus were decreased with increasing concentration of NaCl in the present study. However, the colonization with AMF significantly increased K+ and P and reduced Na+ uptake. It is concluded that presown soil treatment with AMF reduced severity of salt stress in E. aphylla through alterations in physiological parameters, antioxidants and uptake of nutrients.  相似文献   

17.
Soil salinity restricts plant growth and productivity. Na+ represents the major ion causing toxicity because it competes with K+ for binding sites at the plasma membrane. Inoculation with arbuscular mycorrhizal fungi (AMF) can alleviate salt stress in the host plant through several mechanisms. These may include ion selection during the fungal uptake of nutrients from the soil or during transfer to the host plant. AM benefits could be enhanced when native AMF isolates are used. Thus, we investigated whether native AMF isolated from an area with problems of salinity and desertification can help maize plants to overcome the negative effects of salinity stress better than non‐AM plants or plants inoculated with non‐native AMF. Results showed that plants inoculated with two out the three native AMF had the highest shoot dry biomass at all salinity levels. Plants inoculated with the three native AMF showed significant increase of K+ and reduced Na+ accumulation as compared to non‐mycorrhizal plants, concomitantly with higher K+/Na+ ratios in their tissues. For the first time, these effects have been correlated with regulation of ZmAKT2, ZmSOS1 and ZmSKOR genes expression in the roots of maize, contributing to K+ and Na+ homeostasis in plants colonized by native AMF.  相似文献   

18.
A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of β-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.  相似文献   

19.
1. It has been hypothesised that the symbiosis with arbuscular mycorrhizal fungi (AMF) leads to a higher uptake of phosphorus (P) and nitrogen (N) in aquatic plants, but it has never been shown experimentally without the use of fungicides. In particular, the symbiosis may be important for nutrient uptake by isoetids in oligotrophic lakes, where low concentrations of inorganic N and P both in the water and in the sediment limit the growth of plants and where symbiosis facilitates the uptake of nutrients from the sediment. 2. Plants of the isoetid Littorella uniflora were propagated under the sterile conditions without an AMF infection. The plants were then grown for 60 days with and without re‐infection by AMF, and with either high (150 μm ) or low (ambient concentration approximately 15 μm ) CO2 concentration. 3. The study proved that the symbiosis between AMF and L. uniflora had a positive impact on the retention of N and P in the plants at very low nutrient concentrations in the water and on biomass development. Shoot biomass and standing stocks of both P and N were significantly higher in re‐infected plants. 4. Raised CO2 concentration resulted in a fivefold increase in hyphal infection, but had no impact on the number of arbuscules and vesicles in the cross sections. There were significantly higher biomass and lower tissue P and N concentrations in the plants from high CO2 treatments. This resulted in similar standing stocks of P and N in plants from low and high CO2 treatments. 5. The results from this study showed that the symbiosis between AMF and L. uniflora is an important adaptation enabling isoetids to grow on nutrient‐poor sediments in oligotrophic lakes.  相似文献   

20.
Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号