首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
At five European sites, differing in atmospheric Sinputs by a factor of 6, and differing in S isotope signatures ofthese inputs by up to 14 (CDT), we investigated thedirection and magnitude of an assimilation-related 34S shiftand the relationship between atmospheric deposition and Sretention in selected ecosystem compartments. Bulk precipitationand spruce throughfall were collected between 1994 and 1996 inthe Isle of Mull (Scotland), Connemara (Ireland), Thorne Moors(England), Rybárenská slat' and Oceán (both Czech Republic) andanalyzed for sulfate concentrations and 34S ratios. Eighteenreplicate samples per site of living Sphagnum collected inunforested peatlands and 18 samples of spruce forest floorcollected near each of the peatlands were also analyzed for Sconcentrations and 34S ratios. Assimilation of S was associatedwith a negative 34S shift. Plant tissues systematicallypreferred the light isotope 32S, on average by 2. There wasa strong positive correlation between the non-marine portion ofthe atmospheric S input and total S concentration in forest floorand Sphagnum, respectively (R = 0.97 and R = 0.85). Elevated Sinputs lead to higher S retention in these two organic-richcompartments of the ecosystem. It follows that equal emphasismust be placed on organic S as on adsorption/desorption ofinorganic sulfate when studying acidification reversal inecosystems. The sea-shore sites had rainfall enriched in theheavy isotope 34S due to an admixture of sea-spray. The inlandsites had low 34S reflecting 34S of sulfur emitted from localcoal-burning power stations. Sphagnum had always lower S contentsand higher 34S ratios compared to forest floor. The within-siterange of 34S ratios of Sphagnum and forest floor was wide (upto 12) suggesting that at least six replicate samples shouldbe taken when using 34S as a tracer.  相似文献   

2.
We used a novel, nonintrusive experimental system to examine plant responses to warming and drought across a climatic and geographical latitudinal gradient of shrubland ecosystems in four sites from northern to southern Europe (UK, Denmark, The Netherlands, and Spain). In the first two years of experimentation reported here, we measured plant cover and biomass by the pinpoint method, plant 14C uptake, stem and shoot growth, flowering, leaf chemical concentration, litterfall, and herbivory damage in the dominant plant species of each site. The two years of approximately 1°C experimental warming induced a 15% increase in total aboveground plant biomass growth in the UK site. Both direct and indirect effects of warming, such as longer growth season and increased nutrient availability, are likely to be particularly important in this and the other northern sites which tend to be temperature-limited. In the water-stressed southern site, there was no increase in total aboveground plant biomass growth as expected since warming increases water loss, and temperatures in those ecosystems are already close to the optimum for photosynthesis. The southern site presented instead the most negative response to the drought treatment consisting of a soil moisture reduction at the peak of the growing season ranging from 33% in the Spanish site to 82% in The Netherlands site. In the Spanish site there was a 14% decrease in total aboveground plant biomass growth relative to control. Flowering was decreased by drought (up to 24% in the UK and 40% in Spain). Warming and drought decreased litterfall in The Netherlands site (33% and 37%, respectively) but did not affect it in the Spanish site. The tissue P concentrations generally decreased and the N/P ratio increased with warming and drought except in the UK site, indicating a progressive importance of P limitation as a consequence of warming and drought. The magnitude of the response to warming and drought was thus very sensitive to differences among sites (cold-wet northern sites were more sensitive to warming and the warm-dry southern site was more sensitive to drought), seasons (plant processes were more sensitive to warming during the winter than during the summer), and species. As a result of these multiple plant responses, ecosystem and community level consequences may be expected.  相似文献   

3.
Rola  Kaja  Plášek  Vítězslav  Rożek  Katarzyna  Zubek  Szymon 《Plant and Soil》2021,466(1-2):613-630
Plant and Soil - Overstorey tree species influence both soil properties and microclimate conditions in the forest floor, which in turn can induce changes in ground bryophyte communities. The aim of...  相似文献   

4.
During the growing season of the exceptionally dry and warm year 2003, we assessed seasonal changes in nitrogen, carbon and water balance related parameters of mature naturally grown European beech (Fagus sylvatica L.) along a North–South transect in Europe that included a beech forest stand in central Germany, two in southern Germany and one in southern France. Indicators for N balance assessed at all four sites were foliar N contents and total soluble non-protein nitrogen compounds (TSNN) in xylem sap, leaves and phloem exudates; C and water balance related parameters determined were foliar C contents, δ13C and δ18O signatures. Tissue sampling was performed in May, July and September. The N related parameters displayed seasonal courses with highest concentrations during N remobilization in May. Decreased total foliar N contents as well as higher C/N ratios in the stands in central Germany and southern France compared to the other study sites point to an impaired N nutrition status due to lower soil N contents and precipitation perception. TSNN concentrations in leaves and phloem exudates of all study sites were in ranges previously reported, but xylem sap content of amino compounds in July was lower at all study sites when compared to literature data (c. 1 μmol N mL−1). In September, TSNN concentrations increased again at the two study sites in southern Germany after a rain event, whereas they remained constant at sites in central Germany and southern France which hardly perceived precipitation during that time. Thus, TSNN concentrations in the xylem sap might be indicative for water balance related N supply in the beech trees. TSNN profiles at all study sites, however, did not indicate drought stress. Foliar δ13C, but not foliar C and δ18O followed a seasonal trend at all study sites with highest values in May. Differences in foliar δ13C and δ18O did not reflect climatic differences between the sites, and are attributed to differences in altitude, photosynthesis and δ18O signatures of the water sources. Except of low TSNN concentrations in the xylem sap, no physiological indications of drought stress were detected in the trees analysed. We suppose that the other parameters assessed might not have been sensitive to the drought events because of efficient regulation mechanisms that provide a suitable physiological setting even under conditions of prolonged water limitation. The uniform performance of the trees from southern France and central Germany under comparably dry climate conditions denotes that the metabolic plasticity of mature beech from the different sites studied might be similar.  相似文献   

5.
This paper presents results from a multidisciplinary study of a negotiation process between farmers and wildlife authorities which led to an agricultural subsidy scheme to alleviate conflicts between agriculture and geese in Norway. The Svalbard-breeding population of pink-footed geese Anser brachyrhynchus has increased considerably over the last decades and conflicts with farmers have escalated, especially at stopover sites in spring when geese feed on newly sprouted pasture grass. In Vesterålen, an important stopover site for geese in North Norway, farmers deployed scaring of geese at varying intensity dependent on the level of conflict during 1988–2012. We assessed the efficiency of a subsidy scheme established in 2006, in terms of its conflict mitigation, reflected in a near discontinuation of scaring activities. The presence of pink-footed geese was analysed in relation to scaring intensity, the total goose population size and the increasing occurrence of another goose species, the barnacle goose Branta leucopsis. Scaring significantly affected the number of geese staging in Vesterålen, both in absolute and relative terms (controlling for total population size). The geese responded immediately to an increased, and reduced, level of scaring. Despite the establishment of the subsidy scheme, the number of pink-footed geese has recently declined which is probably caused by the increasing number of barnacle geese. For the farmers, the subsidy scheme provides funding that reduces the economic costs caused by the geese. Sustaining a low level of conflict will require close monitoring, dialogue and adaptation of the subsidy scheme to cater for changes in goose population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号