首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel genera of restricted facultative methylotrophs are described; both Methylosulfonomonas and Marinosulfonomonas are unique in being able to grow on methanesulfonic acid as their sole source of carbon and energy. Five identical strains of Methylosulfonomonas were isolated from diverse soil samples in England and were shown to differ in their morphology, physiology, DNA base composition, molecular genetics, and 16S rDNA sequences from the two marine strains of Marinosulfonomonas, which were isolated from British coastal waters. The marine strains were almost indistinguishable from each other and are considered to be strains of one species. Type species of each genus have been identified and named Methylosulfonomonas methylovora (strain M2) and Marinosulfonomonas methylotropha (strain PSCH4). Phylogenetic analysis using 16S rDNA sequencing places both genera in the α-Proteobacteria. Methylosulfonomonas is a discrete lineage within the α-2 subgroup and is not related closely to any other known bacterial genus. The Marinosulfonomonas strains form a monophyletic cluster in the α-3 subgroup of the Proteobacteria with Roseobacter spp. and some other partially characterized marine bacteria, but they are distinct from these at the genus level. This work shows that the isolation of bacteria with a unique biochemical character, the ability to grow on methanesulfonic acid as energy and carbon substrate, has resulted in the identification of two novel genera of methylotrophs that are unrelated to any other extant methylotroph genera. Received: 19 July 1996 / Accepted: 7 October 1996  相似文献   

2.
Several bacterial strains that are obligate for both thermophily and hydrocarbon utilization have been isolated from a number of thermal and non-thermal environments. Mud and water samples obtained from geographic sites across the United States were subjected to enrichment procedures at 60° C with n-heptadecane as sole growth substrate. Organisms forming very small white colonies on agar surfaces were often evident on primary enrichment. These bacteria were Gram negative, aerobic, small, and rodshaped. They lacked pigmentation, motility, and the ability to form endospores. Growth occurred in the temperature range from 45° C to 70° C with the optimum around 60° C and at a pH near neutrality. Only n-alkanes from 13 to 20 carbons in length were utilized by these organisms as growth substrate. The mol% guanine plus cytosine values for these strains were between 68 and 70%. The physiological and morphological characteristics of these organisms are distinctly different from any previously described thermophilic microbes. It is proposed that they be placed in a new genus, Thermoleophilum gen. nov. with the type species being Thermoleophilum album gen. nov., sp. nov. The type strain in ATCC 35263.Paper number 8953 of the Journal Series of the North Carolina Agricultural Research Service Raleigh, NC 27695, USA  相似文献   

3.
Five strains of rod-shaped, Gram-negative, non-sporing, strictly anaerobic bacteria were isolated from limnic and marine mud samples with gallic acid or phloroglucinol as sole substrate. All strains grew in defined mineral media without any growth factors; marine isolates required salt concentrations higher than 1% for growth, two freshwater strains only thrived in freshwater medium. Gallic acid, pyrogallol, 2,4,6-trihydroxybenzoic acid, and phloroglucinol were the only substrates utilized and were fermented stoichiometrically to 3 mol acetate (and 1 mol CO2) per mol with a growth yield of 10g cell dry weight per mol of substrate. Neither sulfate, sulfur, nor nitrate were reduced. The DNA base ratio was 51.8% guanine plus cytosine. A marine isolate, Ma Gal 2, is described as type strain of a new genus and species, Pelobacter acidigallici gen. nov. sp. nov., in the family Bacteroidaceae. In coculture with Acetobacterium woodii, the new isolates converted also syringic acid completely to acetate. Cocultures with Methanosarcina barkeri converted the respective substrates completely to methane and carbon dioxide.  相似文献   

4.
Strain Gsoil 348T was isolated from a ginseng field soil sample by selecting micro-colonies from one-fifth strength modified R2A agar medium after a long incubation period. 16S rRNA gene sequence analysis indicated that the strain is related to members of the phylum Armatimonadetes (formerly called candidate phylum OP10). Strain Gsoil 348T is mesophilic, strictly aerobic, non-motile and rod-shaped. It only grows in low nutrient media. The major respiratory quinones are menaquinones MK-11 and MK-10, and the main fatty acids are iso-C15:0, iso-C17:0, C16:0 and C16:1 ω11c. The G+C content is 61.4 mol%. The 16S rRNA gene sequences in public databases belonging to the phylum Armatimonadetes were clustered here into 6 groups. Five of these groups constituted a coherent cluster distinct from the sequences of other phyla in phylogenetic trees that were constructed using multiple-outgroup sequences from 49 different phyla. On the basis of polyphasic taxonomic analyses, it is proposed that strain Gsoil 348T (= KACC 14959T = JCM 17079T) should be placed in Fimbriimonas ginsengisoli gen. nov., sp. nov., as the cultured representative of the Fimbriimonadia class. nov., corresponding with Group 4 of the phylum Armatimonadetes.  相似文献   

5.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T).  相似文献   

6.
A strain EG19T of aerobic bacteria able to form pleomorphic cells was isolated from a brine spring runoff stream in the west central region of the province of Manitoba, Canada. The pale pinkish purple strain contained bacteriochlorophyll a incorporated into light-harvesting I and reaction center complexes. Its inability to grow under anaerobic illuminated conditions prompted designation as a member of the functional group known as aerobic anoxygenic phototrophic bacteria. Phylogenetic analysis of the 16S rRNA gene sequence revealed that it belonged to the Gammaproteobacteria, forming a distinct branch of phototrophs distantly related to most described aerobic anoxygenic phototrophs, quite marginally related (95.6%) both to the only other described gammaproteobacterial aerobic phototroph, Congregibacter litoralis, and also to nonphototrophs in the genus Haliea (95.1–96.1%). Physiological tests demonstrated tolerance profiles to salinity (0–18% NaCl), pH (7–12), and temperature (7–40°C) consistent with survival in a shallow hypersaline stream on the exposed, vegetation-depleted salt playa of its native East German Creek. Phylogenetic data and phenotypic properties such as pigment composition, morphology, and physiology support the proposal of the novel genus and species Chromocurvus halotolerans gen. nov., sp. nov., with EG19T (=DSM 23344T, =VKM B-2659T) as the type strain.  相似文献   

7.
A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M‐2T was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775‐m‐deep oil exploration well (Tomsk region, Russia). Strain P3M‐2T is a moderate thermophile and facultative anaerobe growing on mono‐, di‐ or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M‐2T. Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum‐level lineage. Hence, we propose a new phylum Ignavibacteriae within the BacteroidetesChlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically.  相似文献   

8.
A new chemolithotrophic nitrite-oxidizing bacterium, for which the name Nitrospira marina is proposed, was isolated from the Gulf of Maine. N. marina is a Gramnegative curved rod which may form spirals with 1 to 12 turns. Cells have a unique periplasmic space and lack intracytoplasmic membranes and carboxysomes. N. marina is an obligate chemolithotroph, but best growth is obtained in a mixotrophic medium. N. marina may be one of the most prevalent nitrite-oxidizing bacteria in some oceanic environments. Type strain is field with American Type Culture Collection (ATCC 43039).  相似文献   

9.
Two strains, asporogenous Z-7940 and sporogenous Z-7939, of a moderately haloalkaliphilic, obligately anaerobic, fermentative bacteria, motile, with Gram-positive cell wall structure, were isolated from soda deposits in Lake Magadi, Kenya. Both strains are mesophilic and utilize only two amino acids, histidine and glutamate, with formation of acetate and ammonium as the main end products. Strain Z-7939 in addition is able to utilize pyruvate. DNA-DNA homology between strains Z-7940 and Z-7939 was 94%, indicating that in spite of phenotypic differences they belong to the same species. They are true alkaliphiles with a pH range for growth of the type strain Z-7940 from pH 8.0 to pH 10.5, optimum at pH 9.4. Both strains obligately depend on sodium and bicarbonate ions. The optimum salt concentration for growth of the type strain is 8–10% wt/vol and the range from 4% to 16%. The G+C content of strain Z-7940 is 31.9 mol% and the strain Z-7939 is 32.3 mol%. Analysis of 16S rDNA sequence of the type strain shows it to belong to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and physiological properties, we propose a new genus and new species Natronoincola histidinovorans for these strains. The type strain is Z-7940 (=DSM 11416). Received: 5 March 1998 / Accepted: 3 April 1998  相似文献   

10.
A new type of thermophilic cyanobacterial mat, rich in elemental sulfur and containing large numbers of sulfur-reducing bacteria able to utilize different growth substrates at 55° C, was found in the Uzon caldere (Kamchatka). One of the largest groups among these organisms were acetate-oxidizing sulfur-reducing bacteria, numbering 106 cells · cm–3 of mat. The pure culture of a sulfur-reducing eubacterium growing on acetate was isolated. Cells of the new isolate are Gram-negative short rods, often in pairs, motile, with a single polar flagellum. The optimal temperature for growth is 52 to 57° C, with no growth observed at 42 or 73° C. The pH optimum is 6.8 to 7.0. The new isolate is demonstrated to be a true dissimilatory sulfur reducer: it is an obligate anaerobe, it is unable to ferment organic substrates and it can use no electron acceptors other than elemental sulfur. Acetate is the only energy and carbon source, and H2S and CO2 are growth products. No cytochromes were detected. The G+C content of DNA is rather low, only 31.4 mol%. Thus, morphological and physiological features of the new isolate are quite close to those of Desulfuromonas. But on the grounds of a significant difference in the G+C content of DNA, the absence of cytochromes and because of its thermophilic nature, a new genus Desulfurella is proposed with the type species Desulfurella acetivorans.  相似文献   

11.
12.
13.
Four strains of heterotrophic, fusiform caulobacters have been isolated from freshwater sources. A single prostheca extends from one pole of mature cells, and cells attach to various substrata by means of a holdfast located at the distal tip of the appendage. Thus, superficially these bacteria bear a strong resemblance to bacteria in the genus Caulobacter. However, unlike Caulobacter these bacteria do not exhibit a dimorphic life cycle of motile, non-stalked daughter cells and immotile, stalked mother cells. Instead both mother and daughter cells are immotile, and at the time of cell separation the daughter cells are essentially identical mirror-image replicas of the mother cell. In addition, the prosthecae of these fusiform caulobacters do not have crossbands, they are somewhat wider than the stalks of Caulobacter and the pseudostalks of Asticcacaulis, and they terminate in a bulbous tip. The deoxyribonucleic acid (DNA) base composition ranges from 54.6–60.1, well below the 62–67 range for the genus Caulobacter. Based upon these and other differences, a new genus and species, Prosthecobacter fusiformis, is proposed for the fusiform caulobacters.  相似文献   

14.
Anaerobic saccharolytic bacteria thriving at high pH values were studied in a cellulose-degrading enrichment culture originating from the alkaline lake, Verkhneye Beloye (Central Asia). In situ hybridization of the enrichment culture with 16S rRNA-targeted probes revealed that abundant, long, thin, rod-shaped cells were related to Cytophaga. Bacteria of this type were isolated with cellobiose and five isolates were characterized. Isolates were thin, flexible, gliding rods. They formed a spherical cyst-like structure at one cell end during the late growth phase. The pH range for growth was 7.5–10.2, with an optimum around pH 8.5. Cultures produced a pinkish pigment tentatively identified as a carotenoid. Isolates did not degrade cellulose, indicating that they utilized soluble products formed by so far uncultured hydrolytic cellulose degraders. Besides cellobiose, the isolates utilized other carbohydrates, including xylose, maltose, xylan, starch, and pectin. The main organic fermentation products were propionate, acetate, and succinate. Oxygen, which was not used as electron acceptor, impaired growth. A representative isolate, strain Z-7010, with Marinilabilia salmonicolor as the closest relative, is described as a new genus and species, Alkaliflexus imshenetskii. This is the first cultivated alkaliphilic anaerobic member of the Cytophaga/Flavobacterium/Bacteroides phylum.Dedicated to Prof. Dr. Hans Günter Schlegel on the occasion of his 80th birthday.  相似文献   

15.
Four strains of obligately heterotrophic bacteria isolated from the oxygen-sulfide interface of the Black Sea are characterized. The bacteria are aerobic, Gram-negative, with lemon-like, nonmotile cells. Bacteriochlorophyll a is not detected. They are mesophilic and neutrophilic with a temperature range of 8–35 °C (optimum 25) and pH range of 6.5–8.5 (optimum 7.8). Their growth is NaCl dependent within a range of 5 and 60 (optimum 20) g l−1. They are able to oxidize thiosulfate, sulfide and elemental sulfur to sulfate and to use metabolic energy from these reactions (lithoheterotrophy). According to the level of DNA reassociation of more than 40%, all isolates represent a single generic group. The G+C content of the DNA was in the range of 67.5–69.2 mol%. According to phylogenetic analysis, the new isolates form a separate branch in the alpha-3 subdivision of the Proteobacteria together with two undescribed marine bacterial strains. On the basis of phenotypical and genomic properties, the new isolates are described as a new genus and species Citreicella thiooxidans gen. nov., sp. nov. The type strain is CHLG 1T (=DSM 10146, UNIQEM U 228).  相似文献   

16.
Two heterotrophic bacteroidetes strains were isolated as satellites from autotrophic enrichments inoculated with samples from hypersaline soda lakes in southwestern Siberia. Strain Z-1702T is an obligate anaerobic fermentative saccharolytic bacterium from an iron-reducing enrichment culture, while Ca. Cyclonatronum proteinivorum OmegaT is an obligate aerobic proteolytic microorganism from a cyanobacterial enrichment. Cells of isolated bacteria are characterized by highly variable morphology. Both strains are chloride-independent moderate salt-tolerant obligate alkaliphiles and mesophiles. Strain Z-1702T ferments glucose, maltose, fructose, mannose, sorbose, galactose, cellobiose, N-acetyl-glucosamine and alpha-glucans, including starch, glycogen, dextrin, and pullulan. Strain OmegaT is strictly proteolytic utilizing a range of proteins and peptones. The main polar lipid fatty acid in both strains is iso-C15:0, while other major components are various C16 and C17 isomers. According to pairwise sequence alignments using BLAST Gracilimonas was the nearest cultured relative to both strains (<90% of 16S rRNA gene sequence identity). Phylogenetic analysis placed strain Z-1702T and strain OmegaT as two different genera in a deep-branching clade of the new family level within the order Balneolales with genus. Based on physiological characteristics and phylogenetic position of strain Z-1702T it was proposed to represent a novel genus and species Natronogracilivirga saccharolityca gen. nov., sp. nov. (= DSMZ 109061T =JCM 32930T =VKM B 3262T). Furthermore, phylogenetic and phenotypic parameters of N. saccharolityca and C. proteinivorum gen. nov., sp. nov., strain OmegaT (=JCM 31662T, =UNIQEM U979T), make it possible to include them into a new family with a proposed designation Cyclonatronaceae fam. nov..  相似文献   

17.
On the basis of phenotypic properties and G+C content of DNA, as well as competitive DNA-DNA hybridization and extracellular polymeric substance analysis it was shown that this strain was completely different from all other alkaliphilic bacteria. We hereby propose that this strain be designatedAlkalobacter lublini gen. nov., sp. nov.  相似文献   

18.
Six strains of a new anaerobic thermophilic non-sporeforming bacterium were isolated in pure culture from industrial yeast biomass. Cells were rod-shaped (0.4–0.8×1.0–11.0 m), non-motile. They stained gram-negative, but outer membrane was not present. The growth occurred between 45–75 °C, the optimal temperature is 65°. Optimal pH value was 7.0–7.4. The bacterium utilized for growth several sugars, starch and yeast extract. The best source of nitrogen was peptone. The main fermentation products of glucose were ethanol, acetate, H2 and CO2. As minor products isopropanol, butanol, butyrate and lactate were found. Glucose was metabolized via the Embden-Meyerhoff pathway. Cytochromes and quinones were not found. DNA-base composition was 33.2–34.0 mol%. The DNA-DNA hybridization and 5S rRNA nucleotide sequences showed distantly related of isolated stains to phenotypical similar bacteria. It was proposed to consider the isolated bacterium as Thermohydrogenium kirishiense gen. nov. and sp. nov.  相似文献   

19.
Anaerobic enrichment cultures with elemental sulfur as electron acceptor and either acetate or propionate as electron donor and carbon source at pH 10 and moderate salinity inoculated with sediments from soda lakes in Kulunda Steppe (Altai, Russia) resulted in the isolation of two novel members of the bacterial phylum Chrysiogenetes. The isolates, AHT11 and AHT19, represent the first specialized obligate anaerobic dissimilatory sulfur respirers from soda lakes. They use either elemental sulfur/polysulfide or arsenate as electron acceptor and a few simple organic compounds as electron donor and carbon source. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while arsenate is reduced to arsenite. The bacteria belong to the obligate haloalkaliphiles, with a pH growth optimum from 10 to 10.2 and a salt range from 0.2 to 3.0 M Na+ (optimum 0.4–0.6 M). According to the phylogenetic analysis, the two strains were close to each other, but distinct from the nearest relative, the haloalkaliphilic sulfur-reducing bacterium Desulfurispirillum alkaliphilum, which was isolated from a bioreactor. On the basis of distinct phenotype and phylogeny, the soda lake isolates are proposed as a new genus and species, Desulfurispira natronophila (type strain AHT11T = DSM22071T = UNIQEM U758T).  相似文献   

20.
Acidobacterium is proposed as a new genus for the acidophilic, chemoorganotrophic bacteria containing menaquinone isolated from acidic mineral environments.Acidobacterium capsulatum is proposed for the singleAcidobacterium species which consists of eight strains (Biogroup 5). The members of this species are gram-negative, aerobic, mesophilic, non-spore-forming, capsulated, saccharolytic, and rod-shaped bacteria. They are motile by peritrichous flagella. They can grow between pH 3.0 and 6.0, but not at pH 6.5. They give positive results in tests for esculin hydrolysis, catalase, and -galactosidase. Oxidase and urease are negative. They can use glucose, cellobiose, starch, maltose, or -gentiobiose as a sole carbon source, but cannot use elemental sulfur and ferrous iron as an energy source. The DNA base composition is 59.7–60.8 guanine plus cytosine (G+C) mol%. The major isoprenoid quinone is menaquinone with eight isoprene units (MK-8). The major fatty acid is 13-methyltetradecanoic acid. DNA relatedness between this species and the species ofAcidiphilium, Acidomonas, andDeinobacter was 18 to 2%. From phenotypic and chemotaxonomic characters, these member do not belong to any known taxa of gram-negative bacteria. A culture of the type strain (strain 161) has been deposited in the Japan Collection of Microorganisms as JCM 7670.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号