首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
1. Herbivores sometimes suppress plant defences. This study tested whether the presence of pea aphids (Acyrthosiphon pisum Harris) on broad bean (Vicia faba) led to decreased secretion of extrafloral nectar (EFN) which functions as an indirect plant defence against herbivores. 2. To determine effects of aphid infestation on EFN secretion, a comparison was done between EFN secretion in uninfested plants and that in plants infested by A. pisum and another aphid species (Aphis craccivora Koch). 3. When broad bean plants were infested by A. pisum, they secreted significantly smaller amounts of EFN than did uninfested plants and A. craccivora‐infested plants. There was no significant difference in EFN secretion between uninfested plants and A. craccivora‐infested plants. The number of extrafloral nectaries did not differ among the three treatments. 4. These results suggest that A. pisum reduced EFN production in broad bean plants.  相似文献   

2.
1. To maximise their reproductive success, the females of most parasitoids must not only forage for hosts but must also find suitable food sources. These may be nectar and pollen from plants, heamolymph from hosts and/or honeydew from homopterous insects such as aphids. 2. Under laboratory conditions, females of Cotesia vestalis, a larval parasitoid of the diamondback moth (Plutella xylostella) which does not feed on host blood, survived significantly longer when held with cruciferous plants infested with non‐host green peach aphids (Myzus persicae) than when held with only uninfested plants. 3. Naïve parasitoids exhibited no preference between aphid‐infested and uninfested plants in a dual‐choice test, but those that had been previously fed aphid honeydew significantly preferred aphid‐infested plants to uninfested ones. 4. These results suggest that parasitoids that do not use aphids as hosts have the potential ability to learn cues from aphid‐infested plants when foraging for food. This flexible foraging behaviour could allow them to increase their lifetime reproductive success.  相似文献   

3.
Undamaged plants are known to suffer less damage from herbivores when previously exposed to airborne factors from neighboring plants that are either infested or artificially damaged. However, to date, the effects of such a defensive phenomenon on performance of herbivorous insects have not been clearly shown. Here, we studied such effects in an interaction between a willow plant, Salix eriocarpa Franchet et Savatier (Salicales: Salicaceae), and a specialist leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae). In a wind tunnel, uninfested willow plants were placed downwind of willow plants infested by leaf beetle larvae for 4 days. As a control, we placed uninfested plants downwind of uninfested plants in the tunnel. After exposure, downwind plants were served to leaf beetle larvae. Pupal weight, larval survival rates, and the leaf area consumed by larvae all decreased significantly, and larval developmental duration increased significantly, when larvae fed on willow plants downwind of infested plants were compared with those downwind of uninfested plants. These results showed that airborne factors from infested willow plants negatively affected the performance of leaf beetle larvae. Further studies are needed to identify the active factor(s) from the infested willow plants affecting the performance of leaf beetle larvae.  相似文献   

4.
Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous insects such as lepidopteran larvae. Here, we show that great tits (Parus major) discriminate between caterpillar‐infested and uninfested trees. Birds were attracted to infested trees, even when they could not see the larvae or their feeding damage. We furthermore show that infested and uninfested trees differ in volatile emissions and visual characteristics. Finally, we show, for the first time, that birds smell which tree is infested with their prey based on differences in volatile profiles emitted by infested and uninfested trees. Volatiles emitted by plants in response to herbivory by lepidopteran larvae thus not only attract predatory insects but also vertebrate predators.  相似文献   

5.
Plants provide aphids with unbalanced and low concentrations of amino acids. Likely, intracellular symbionts improve the aphid nutrition by participating to the synthesis of essential amino acids. To compare the aphid amino acid uptakes from the host plant and the aphids amino acid excretion into the honeydew, host plant exudates (phloem + xylem) from infested and uninfested Vicia faba L. plants were compared to the honeydew produced by two aphid species (Acyrthosiphon pisum Harris and Megoura viciae Buckton) feeding on V. faba. Our results show that an aphid infestation modifies the amino acid composition of the infested broad bean plant since the global concentration of amino acids significantly increased in the host plant in response to aphid infestations. Specifically, the concentrations of the two amino acids glutamine and asparagine were strongly enhanced. The amino acid profiles from honeydews were similar for the two aphid species, but the concentrations found in the honeydews were generally lower than those measured in the exudates of infested plants (aphids uptakes). This work also highlights that aphids take large amounts of amino acids from the host plant, especially glutamine and asparagine, which are converted into glutamic and aspartic acids but also into other essential amino acids. The amino acid profiles differed between the host plant exudates and the aphid excretion product. Finally, this study highlights that the pea aphid, a “specialist” for the V. faba host plant, induced more important modifications into the host plant amino acid composition than the “generalist” aphid M. viciae.  相似文献   

6.
Genetically modified maize crops expressing Bacillus thuringiensis (Bt) toxins (Bt maize) are increasingly cultivated worldwide, and large amounts of Bt maize have been imported to Korea. Before evaluating the environmental impacts of Bt maize of unknown origin on non-target insects, crystal (Cry) protein types in the imported Bt maize plants were identified. Because Cry1F was found in the tested Bt maize plants, Rhopalosiphum padi, a non-lepidopteran species, was selected as the non-target insect species. Additionally, a widely cultivated domestic maize strain was selected as an alternative control. No difference in survival rate, alata vivipara production, or host preference was observed between R. padi fed on the Bt maize and the control non-Bt maize, indicating that Bt maize plants had no sub-chronic adverse effects on R. padi. The average number of nymphs from Bt maize-fed aphids was 1.73-fold higher than that of non-Bt maize-fed aphids, implying that R. padi population density can increase after several generations in Bt maize fields. An enzyme-linked immunosorbent assay revealed that Cry1F toxin concentrations increased gradually in the body of R. padi when they were fed Bt maize, but that all ingested Cry toxins were excreted within 10 days after Bt-fed aphids were transferred to non-Bt maize, suggesting little possibility of Cry toxin exposure via R. padi to the endoparasitoids. However, the possibility still remains that Cry toxins can be transferred to predatory insects in higher trophic levels if they consume Bt maize-fed aphids.  相似文献   

7.
The current trend of increasing proportion of cultivation of transgenic Bt crops is pushing towards dramatic destabilization of the agroecosystem, thus raising severe concerns about the sustainability of transgenic Bt crops as an effective management tool for the control of target insect pests in the future. Rhizobacteria is the key biological regulator to ameliorate soil‐nitrogen utilization efficiency of crop plants, especially transgenic Bt crops. A laboratory study quantified the impacts of transgenic Bt maize (Line IE09S034 with Cry1Ie vs. non‐Bt maize cv. Xianyu335) inoculated with Azospirillum brasilense (AB) and Azotobacter chroococcum (AC) on the growth, development and food utilization of a target lepidopteran insect, Mythimna separata. The results showed that the inoculation of rhizobacteria significantly prolonged the larval lifespan and pupal duration, increased RCR and AD, reduced pupal weight, pupation rate, fecundity, RGR, ECD and ECI, and shortened adult longevity of M. separata fed on transgenic Bt maize, while exact opposite trends were found in these measured indexes of growth, development and food utilization for M. separata fed on non‐Bt maize inoculated with AB and AC compared with the buffer control in both years. Thus, the results clearly depicted that the inoculation of rhizobacteria had opposite influences on the growth, development and food utilization of M. separata fed on transgenic Bt maize. Presumably, rhizobacteria inoculation can be used to stimulate plant–soil‐nitrogen uptake and promote plant growth for transgenic Bt maize and non‐Bt maize, simultaneously increasing Bt toxin production and enhancing resistance efficiency against target lepidopteran pests for transgenic Bt maize.  相似文献   

8.
The influence of Russian wheat aphid ( Diuraphis noxia Mordvilko) infestation on the response of barley ( Hordeum vulgare L. ev Hazen) plants to drought stress was investigated. Fourteen-day-old plants were infested with eight apterous adult aphids, which were removed 7 days later with systemic insecticide. Leaves previously infested with aphids had lower relative water content, reduced stomatal conductance, more negative water potential, lower levels of chlorophyll and higher levels of amino-N, proline and glycinebetaine than corresponding leaves from uninfested plants. When water was withheld for a period of 7 days after aphids were removed, the relative water content of previously infested plants dropped steadily from 0.89 to 0.60, while the relative water content of uninfested plants remained at about 0.94 for the first 4 days of the drought stress period followed by a steady drop to about 0.77 by the end of the drought stress period. Leaf water potentials dropped steadily during the drought stress period in both previously infested (-1.14 to -1.91 MPa) and unin-fested (-0.54 to -1.52 MPa) plants. Analysis of glycinebetaine and proline levels at the end of the drought stress period indicated that leaves of previously infested plants accumulated lower levels of these solutes than leaves from uninfested plants. Upon alleviation of drought stress, plants previously infested with aphids showed little increase in dry weight while younger leaves and tillers from uninfested plants showed large increases. It is concluded that Russian wheat aphids cause drought-stress symptoms in leaves of infested plants even in the presence of ample root moisture. The observations of low levels of glycinebetaine and proline present in leaves after water was withheld from roots and lack of leaf growth upon alleviation of drought stress in previously-infested plants, suggest that aphid infestation limits the capacity of barley plants to adjust successfully to drought stress.  相似文献   

9.
We investigated the effect of prohydrojasmon [propyl (1RS,2RS)‐(3‐oxo‐ 2‐pentylcyclopentyl) acetate] (PDJ) treatment of intact corn plants, on their attractiveness to the specialist endoparasitoid, Cotesia kariyai Watanabe (Hymenoptera: Braconidae), and on the performance of the common armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae) under laboratory conditions. Attractiveness of C. kariyai to PDJ‐treated plants was studied in a wind tunnel, whereas performance of M. separata larvae was tested in plastic cages. The attractiveness of the treated plants increased with concentrations of PDJ increasing to 2 mm , which was equivalent to the attractiveness of host‐infested plants. PDJ‐treated corn plants emitted 16 volatile compounds (α‐pinene, β‐myrcene, (Z)‐3‐hexenyl acetate, limonene, (E)‐β‐ocimene, linalool, (E)‐4,8‐dimethyl‐1,3,7‐nonatriene, (+)‐cyclosativene, ylangene, (E)‐β‐farnesene, (E, E)‐4,8,12‐trimethyl‐1,3,7,11‐tridecatetraene, α‐bergamotene, γ‐cadinene, δ‐cadinene, α‐muulolene and nerolidol), most of which were observed in the headspace of host‐infested corn plants with some quantitative and qualitative differences. We also tested the effects of PDJ treatment on the performance of M. separata larvae. The survival rates of the larval and pupal stages were significantly lower at 2 mm level of PDJ. A significant decrease in weight at 6th stadium larvae was observed only at 2 mm level of PDJ. In contrast, PDJ treatment at all PDJ concentration levels caused significant reduction in weight of pupal stage as compared to control. These data suggested that PDJ, originally developed as a plant growth regulator, especially to induce coloring of fruits, has the potential to induce direct and indirect defenses in corn plants against common armyworm, M. separata.  相似文献   

10.
Abstract 1. The influence of infestation of the larval host plant Gentiana cruciata on the egg‐laying preferences of the xerophilous ecotype of Alcon Blue butterfly (Maculinea alcon) was studied in a semi‐dry grassland area (Aggtelek Karst Region, Northern Hungary). 2. We examined whether oviposition patterns of females differed when G. cruciata stems were uninfested compared with when they were infested by an aphid (Aphis gentianae) or a rust (Puccinia gentianae) species. 3. Females laid more than 90% of their eggs on fertile, uninfested G. cruciata stems, although these stems comprised only ~ 50% of the total stems available. Stems infested by aphids were similar to uninfested ones in properties that had a strong correlation with egg numbers, and yet there were significantly fewer eggs on infested stems than on intact ones. 4. Females never laid eggs on parts of Gentiana stems infested by aphids, and the presence of Lasius paralienus ants, which have a mutualistic interaction with Aphis gentianae, did not increase the repulsive effect of aphids. Infection of Gentiana by Puccinia did not influence the egg‐laying behaviour of females, even though the flowers and buds of infested stems exhibited a delayed development. 5. Aphid infestation can influence butterfly oviposition patterns through both direct and indirect effects. The presence of aphids directly excluded oviposition, but our data also indicated the possibility of an indirect effect of aphid infestation. Stems that had no aphids at the last egg counting, but were infested prior to it, had significantly fewer eggs than those that were never infested.  相似文献   

11.
The impacts of infestation by the green peach aphid (Myzus persicae) on sweetpotato whitefly (Bemisia tabaci) settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect) had fewer whiteflies than those previously infested by aphids (indirect effect). The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.  相似文献   

12.
The attraction of Cotesia flavipes Cameron to volatiles from a range of non-target lepidopteran larvae and their host plants (grasses and trees) or food substrate (honeycomb) was evaluated using a Y-tube olfactometer. The non-target host larvae used in the study included Galleria mellonella (L.), Charaxes cithaeron Felder, Bombyx mori L., and Eldana saccharina Walker. The target insects, Chilo partellus (Swinhoe) and Chilo orichalcociliellus (Strand), were used as controls. Host plants included Afzelia quanzensis Welw., Morus alba L., Cyperus papyrus L., Pennisetum purpureum Schumach, and Zea mays L. The response of C. flavipes to volatiles from the non-target larvae and their food was variable. Attraction to uninfested maize was not significantly different from uninfested plants of non-target hosts or honeycomb. Only maize and honeycomb were preferred over clean air. C. partellus infested maize plants were significantly more attractive than M. alba, A. quanzensis, and honeycomb infested with their herbivores. Infested maize and C. papyrus were more attractive than uninfested ones. When odors from naked larvae were tested, C. flavipes preferred odors from C. partellus larvae over those of E. saccharina and C. cithaeron and larvae of C. partellus and G. mellonella were preferred to clean air. The implications of these findings for biological control and its effect on non-target organisms are discussed.  相似文献   

13.
Damaging effects of either black bean aphid (Aphis fabae), broad bean rust (Uromyces viciae-fabae), or the combination of both were investigated on a susceptible (cv. Diana) and an aphid resistant (cv. Bolero) cultivar of Vicia faba. When compared with rust, aphids caused greater reductions of root dry weight, shoot dry weight, leaf area, and mean relative growth rate. The mean unit leaf rate was also reduced whereas the leaf area ratio was not affected. The damage caused per aphid was highest on the susceptible cultivar. Rust induced damage did not differ between the cultivars. Concomitant infestation with both pests only resulted in additive damage. The population development of aphids was delayed on partially resistant plants. High temperature and rust infection reduced the total number of aphids the plants were able to support but not the level of resistance. Thus the specific damaging effect per aphid was increased.  相似文献   

14.
1 This study investigated the effects of honeydew from aphids in the canopy of Norway spruce (Picea abies (L.) Karst.) on the nitrogen chemistry of throughfall using a rainfall simulation experiment. Throughfall collected beneath infested trees was compared with that from beneath uninfested trees, while standardizing the quality and quantity of the precipitation and plant age. 2 Honeydew excreted by Cinara pilicornis (Hartig) and C. costata (Zett.) significantly increased the concentrations of dissolved organic carbon (DOC) and hexose-C in throughfall. The average concentrations of nitrogenous compounds (NH4-N, NO3-N) in throughfall collected beneath infested trees were significantly lower than beneath uninfested trees. 3 Multiple regression analysis indicated that the amount of rain and NH4-N concentrations were the best predictors of the concentrations of dissolved organic nitrogen (DON) in throughfall. Parameters that were closely associated with the level of infestation (DOC, hexose-C concentrations) did not have a direct relationship with DON. About 40% of the reduction in the concentration of DON in the throughfall was attributed to aphid–micro-organism interactions. 4 Particle amino nitrogen (PAN)-concentrations were highest under infested trees in July after aphid numbers had declined, indicating a concomitant decline in microbial biomass after honeydew becomes a limiting resource. 5 The comparison of the concentrations of different nitrogen compounds in throughfall of infested and uninfested trees indicated that aphids affect the carbon and nitrogen cycles in the phyllosphere by providing energy that fuels the metabolism of the micro-organisms. These processes seem to occur very rapidly. 6 We discuss the significance of the results and the prospects of linking the ecology of micro-organisms and herbivores with flows of nutrients through the canopy of trees.  相似文献   

15.
We developed an experimental model system to monitor the impact of generically modified (GM) plants on arbuscular mycorrhizal (AM) fungi, a group of non-target soil microorganisms, fundamental for soil fertility and plant nutrition. The system allowed us to study the effects of root exudates of both commercial Bt corn and aubergine plants expressing Dm-AMP1 defensin on different stages of the life cycle of the AM fungal species G. mosseae. Root exudates of Bt 176 corn significantly reduced pre-symbiotic hyphal growth, compared to Bt 11 and non-transgenic plants. No differences were found in mycelial growth in the presence of Dm-AMP1 and control plant root exudates. Differential hyphal morphogenesis occurred irrespective of the plant line, suggesting that both exuded Bt toxin and defensin do not interfere with fungal host recognition mechanisms. Bt 176 affected the regular development of appressoria, 36% of which failed to produce viable infection pegs. Our experimental model system represents an easy assay for testing the impact of GM plants on non-target soil-borne AM fungi.  相似文献   

16.
The aphids Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (Homoptera: Aphididae) are serious pests of potato (Solanum tuberosum L.) (Solanaceae), notably in transmitting several plant viruses. Heterospecific interactions may occur between these two species as they are often seen at the same time on the same potato plant in the field. As aphid infestation is known to induce both local and systemic changes, we conducted experiments to determine the effect of previous infestation on probing behaviour and feeding‐related parameters. We used the DC electrical penetration graph technique to characterize the influence of previous infestation by conspecific M. persicae or by heterospecific Ma. euphorbiae on M. persicae feeding behaviour at both local and systemic levels, i.e., on previously infested leaves and on non‐previously infested leaves of infested plants, respectively. Conspecific and heterospecific infestation led to similar modification of M. persicae feeding activities. However, the effects of previous infestation occurring at the local level were opposite to those observed at the systemic level. Myzus persicae food acceptance was slightly enhanced on previously infested leaves, whereas it was inhibited on non‐infested leaves of infested plants, which indicated an induced resistance mechanism. Our results advance the understanding of the mechanisms involved in aphid–host plant acceptance and colonization processes on potato plants in conspecific and heterospecific situations.  相似文献   

17.
In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through theAgrobacterium tumefaciens- mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that thegna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.  相似文献   

18.
Introductions of the harlequin ladybird Harmonia axyridis into Belgium for aphid biological control have been followed by declines in native aphid natural enemies. We first examined, in laboratory and field conditions, the impact of larval mobility of either H. axyridis or Episyrphus balteatus, the most abundant native hoverfly in central Europe, on aphid suppression. The hoverfly larvae consumed more aphids (Megoura viciae) in a short term, whereas the ladybird ones were more efficient in a long term. We second investigated the intraguild interactions between H. axyridis and E. balteatus larvae and adults. In larva pairings between the two species in laboratory microcosms containing aphid (M. viciae) infested broad bean (Vicia faba) plants, H. axyridis had an intraguild predation (IGP) advantage over the hoverfly. When conspecific larvae were paired together on aphid‐infested plants, no cannibalism between them was detected. The presence of either H. axyridis or E. balteatus larvae on aphid‐infested plants negatively influenced the ovipositional behaviour of H. axyridis and E. balteatus females; lower numbers of laid eggs were recorded compared to control treatment. Moreover, eggs laid by E. balteatus females were also dropped as victims of predation mainly by H. axyridis larvae. Our results suggest that while the exotic ladybird was more efficient in aphid biological control, larvae and eggs of the native hoverfly species face increased IGP by H. axyridis, which would contribute, as a consequence, to the decline in E. balteatus population following invasion.  相似文献   

19.
Perceived benefits of insecticidal transgenic crops include reduced usage of broad‐based insecticides, and therefore lower risk to non‐target organisms. Numerous studies have documented low or no direct toxicity of Bacillus thuringiensis (Bt)‐derived toxins against non‐target organisms, but there has been less research on (a) effects of secondary pest infestations on Bt expressing in crops and (b) behavioural responses by predators feeding on host arthropods from Bt crops – both topics are investigated in this study. We quantified predation by the obligate spider mite predator Phytoseiulus persimilis of carmine spider mites (Tetranychus cinnabarinus), reared on Bt or non‐Bt corn (Zea mays). Both no‐choice and two‐choice studies were conducted. In addition, we quantified toxin levels in corn leaves with/without spider mite infestation. Under no‐choice conditions, P. persimilis consumed non‐Bt spider mites at a faster rate than Bt spider mites. Under two‐choice conditions, P. persimilis spent more time in the vicinity of non‐Bt spider mites than near Bt spider mites. Corn infested with spider mites exhibited lower toxin levels than non‐infested plants. These results suggest potentially complex interactions among non‐target herbivores, their natural enemies and Bt crops.  相似文献   

20.
Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号