首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环境微生物研究中机器学习算法及应用   总被引:1,自引:0,他引:1  
陈鹤  陶晔  毛振镀  邢鹏 《微生物学报》2022,62(12):4646-4662
微生物在环境中无处不在,它们不仅是生物地球化学循环和环境演化的关键参与者,也在环境监测、生态治理和保护中发挥着重要作用。随着高通量技术的发展,大量微生物数据产生,运用机器学习对环境微生物大数据进行建模和分析,在微生物标志物识别、污染物预测和环境质量预测等领域的科学研究和社会应用方面均具有重要意义。机器学习可分为监督学习和无监督学习2大类。在微生物组学研究当中,无监督学习通过聚类、降维等方法高效地学习输入数据的特征,进而对微生物数据进行整合和归类。监督学习运用有特征和标记的微生物数据集训练模型,在面对只有特征没有标记的数据时可以判断出标记,从而实现对新数据的分类、识别和预测。然而,复杂的机器学习算法通常以牺牲可解释性为代价来重点关注模型预测的准确性。机器学习模型通常可以看作预测特定结果的“黑匣子”,即对模型如何得出预测所知甚少。为了将机器学习更多地运用于微生物组学研究、提高我们提取有价值的微生物信息的能力,深入了解机器学习算法、提高模型的可解释性尤为重要。本文主要介绍在环境微生物领域常用的机器学习算法和基于微生物组数据的机器学习模型的构建步骤,包括特征选择、算法选择、模型构建和评估等,并对各种机器学习模型在环境微生物领域的应用进行综述,深入探究微生物组与周围环境之间的关联,探讨提高模型可解释性的方法,并为未来环境监测、环境健康预测提供科学参考。  相似文献   

2.
In today’s scaled out systems, co-scheduling data analytics work with high priority user workloads is common as it utilizes better the vast hardware availability. User workloads are dominated by periodic patterns, with alternating periods of high and low utilization, creating promising conditions to schedule data analytics work during low activity periods. To this end, we show the effectiveness of machine learning models in accurately predicting user workload intensities, essentially by suggesting the most opportune time to co-schedule data analytics work. Yet, machine learning models cannot predict the effects of performance interference when co-scheduling is employed, as this constitutes a “new” observation. Specifically, in tiered storage systems, their hierarchical design makes performance interference even more complex, thus accurate performance prediction is more challenging. Here, we quantify the unknown performance effects of workload co-scheduling by enhancing machine learning models with queuing theory ones to develop a hybrid approach that can accurately predict performance and guide scheduling decisions in a tiered storage system. Using traces from commercial systems we illustrate that queuing theory and machine learning models can be used in synergy to surpass their respective weaknesses and deliver robust co-scheduling solutions that achieve high performance.  相似文献   

3.
The successful recent application of machine learning methods to scientific problems includes the learning of flexible and accurate atomic-level force-fields for materials and biomolecules from quantum chemical data. In parallel, the machine learning of force-fields at coarser resolutions is rapidly gaining relevance as an efficient way to represent the higher-body interactions needed in coarse-grained force-fields to compensate for the omitted degrees of freedom. Coarse-grained models are important for the study of systems at time and length scales exceeding those of atomistic simulations. However, the development of transferable coarse-grained models via machine learning still presents significant challenges. Here, we discuss recent developments in this field and current efforts to address the remaining challenges.  相似文献   

4.
Reconstructing biological networks, such as metabolic and signaling networks, is at the heart of systems biology. Although many approaches exist for reconstructing network structure, few approaches recover the full dynamic behavior of a network. We survey such approaches that originate from computational scientific discovery, a subfield of machine learning. These take as input measured time course data, as well as existing domain knowledge, such as partial knowledge of the network structure. We demonstrate the use of these approaches on illustrative tasks of finding the complete dynamics of biological networks, which include examples of rediscovering known networks and their dynamics, as well as examples of proposing models for unknown networks.  相似文献   

5.
This article highlights specific features of biological neurons and their dendritic trees, whose adoption may help advance artificial neural networks used in various machine learning applications. Advancements could take the form of increased computational capabilities and/or reduced power consumption. Proposed features include dendritic anatomy, dendritic nonlinearities, and compartmentalized plasticity rules, all of which shape learning and information processing in biological networks. We discuss the computational benefits provided by these features in biological neurons and suggest ways to adopt them in artificial neurons in order to exploit the respective benefits in machine learning.  相似文献   

6.
This paper presents a machine learning system for supporting the first task of the biological literature manual curation process, called triage. We compare the performance of various classification models, by experimenting with dataset sampling factors and a set of features, as well as three different machine learning algorithms (Naive Bayes, Support Vector Machine and Logistic Model Trees). The results show that the most fitting model to handle the imbalanced datasets of the triage classification task is obtained by using domain relevant features, an under-sampling technique, and the Logistic Model Trees algorithm.  相似文献   

7.
A system with some degree of biological plausibility is developed to categorise items from a widely used machine learning benchmark. The system uses fatiguing leaky integrate and fire neurons, a relatively coarse point model that roughly duplicates biological spiking properties; this allows spontaneous firing based on hypo-fatigue so that neurons not directly stimulated by the environment may be included in the circuit. A novel compensatory Hebbian learning algorithm is used that considers the total synaptic weight coming into a neuron. The network is unsupervised and entirely self-organising. This is relatively effective as a machine learning algorithm, categorising with just neurons, and the performance is comparable with a Kohonen map. However the learning algorithm is not stable, and behaviour decays as length of training increases. Variables including learning rate, inhibition and topology are explored leading to stable systems driven by the environment. The model is thus a reasonable next step toward a full neural memory model.  相似文献   

8.
This review presents a modern perspective on dynamical systems in the context of current goals and open challenges. In particular, our review focuses on the key challenges of discovering dynamics from data and finding data-driven representations that make nonlinear systems amenable to linear analysis. We explore various challenges in modern dynamical systems, along with emerging techniques in data science and machine learning to tackle them. The two chief challenges are (1) nonlinear dynamics and (2) unknown or partially known dynamics. Machine learning is providing new and powerful techniques for both challenges. Dimensionality reduction methods are used for projecting dynamical methods in reduced form, and these methods perform computational efficiency on real-world data. Data-driven models drive to discover the governing equations and give laws of physics. The identification of dynamical systems through deep learning techniques succeeds in inferring physical systems. Machine learning provides advanced new and powerful algorithms for nonlinear dynamics. Advanced deep learning methods like autoencoders, recurrent neural networks, convolutional neural networks, and reinforcement learning are used in modeling of dynamical systems.  相似文献   

9.
Incremental learning concepts are reviewed in machine learning and neurobiology. They are identified in evolution, neurodevelopment and learning. A timeline of qualitative axon, neuron and synapse development summarizes the review on neurodevelopment. A discussion of experimental results on data incremental learning with recurrent artificial neural networks reveals that incremental learning often seems to be more efficient or powerful than standard learning but can produce unexpected side effects. A characterization of incremental learning is proposed which takes the elaborated biological and machine learning concepts into account.  相似文献   

10.
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning—the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system.  相似文献   

11.
Visual category learning by humans is observed within a paradigm of supervised learning. Mental representations for recognition are reconstructed from the observed data structures by fitting to them predicted classification data obtained from similarity-based models of recognition on the one hand and machine vision systems for image understanding on the other hand. These principles are illustrated with examples concerning the dynamics and the dependence on context of processes of category learning.  相似文献   

12.
Artificial neural networks, taking inspiration from biological neurons, have become an invaluable tool for machine learning applications. Recent studies have developed techniques to effectively tune the connectivity of sparsely-connected artificial neural networks, which have the potential to be more computationally efficient than their fully-connected counterparts and more closely resemble the architectures of biological systems. We here present a normalisation, based on the biophysical behaviour of neuronal dendrites receiving distributed synaptic inputs, that divides the weight of an artificial neuron’s afferent contacts by their number. We apply this dendritic normalisation to various sparsely-connected feedforward network architectures, as well as simple recurrent and self-organised networks with spatially extended units. The learning performance is significantly increased, providing an improvement over other widely-used normalisations in sparse networks. The results are two-fold, being both a practical advance in machine learning and an insight into how the structure of neuronal dendritic arbours may contribute to computation.  相似文献   

13.
Proteins sample an ensemble of conformers under physiological conditions, having access to a spectrum of modes of motions, also called intrinsic dynamics. These motions ensure the adaptation to various interactions in the cell, and largely assist in, if not determine, viable mechanisms of biological function. In recent years, machine learning frameworks have proven uniquely useful in structural biology, and recent studies further provide evidence to the utility and/or necessity of considering intrinsic dynamics for increasing their predictive ability. Efficient quantification of dynamics-based attributes by recently developed physics-based theories and models such as elastic network models provides a unique opportunity to generate data on dynamics for training ML models towards inferring mechanisms of protein function, assessing pathogenicity, or estimating binding affinities.  相似文献   

14.
Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system''s structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.  相似文献   

15.
Computational models of plants have identified gaps in our understanding of biological systems, and have revealed ways to optimize cellular processes or organ‐level architecture to increase productivity. Thus, computational models are learning tools that help direct experimentation and measurements. Models are simplifications of complex systems, and often simulate specific processes at single scales (e.g. temporal, spatial, organizational, etc.). Consequently, single‐scale models are unable to capture the critical cross‐scale interactions that result in emergent properties of the system. In this perspective article, we contend that to accurately predict how a plant will respond in an untested environment, it is necessary to integrate mathematical models across biological scales. Computationally mimicking the flow of biological information from the genome to the phenome is an important step in discovering new experimental strategies to improve crops. A key challenge is to connect models across biological, temporal and computational (e.g. CPU versus GPU) scales, and then to visualize and interpret integrated model outputs. We address this challenge by describing the efforts of the international Crops in silico consortium.  相似文献   

16.
近年来,随着计算机硬件、软件工具和数据丰度的不断突破,以机器学习为代表的人工智能技术在生物、基础医学和药学等领域的应用不断拓展和融合,极大地推动了这些领域的发展,尤其是药物研发领域的变革。其中,药物-靶标相互作用(drug-target interactions, DTI)的识别是药物研发领域中的重要难题和人工智能技术交叉融合的热门方向,研究人员在DTI预测方面做了大量的工作,构建了许多重要的数据库,开发或拓展了各类机器学习算法和工具软件。对基于机器学习的DTI预测的基本流程进行了介绍,并对利用机器学习预测DTI的研究进行了回顾,同时对不同的机器学习方法运用于DTI预测的优缺点进行了简单总结,以期对开发更加有效的预测算法和DTI预测的发展提供帮助。  相似文献   

17.
Asha  S.  Vinod  P. 《Cluster computing》2022,25(1):503-522

Artificial intelligence aims to build intelligent systems capable of performing tasks that need human intelligence. Research works in recent years have revealed many potential vulnerabilities in machine learning algorithms. Precisely to exploit these vulnerabilities, an attacker may attempt to design an adversarial input to be incorrectly processed by machine learning algorithms. This paper focuses on methods of generating adversarial samples and discusses possible countermeasures. Our proposed method effectively checks the robustness of different machine learning models using six available hostile robustness tools and summarizes their current development state. The work compares the features of these tools, highlights similarities, and differences among the tools, their strength and weaknesses and trace connections among theoretical methods and their implementations. This paper will provide more insight for researchers and scientists to develop robust solutions and accelerate their experimentation.

  相似文献   

18.
One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.  相似文献   

19.
There is a need to design computational methods to support the prediction of gene regulatory networks. Such models should offer both biologically-meaningful and computationally-accurate predictions, which in combination with other techniques may improve large-scale, integrative studies. This paper presents a new machine learning method for the prediction of putative regulatory associations from expression data, which exhibit properties never or only partially addressed by other techniques recently published. The method was tested on a Saccharomyces cerevisiae gene expression dataset. The results were statistically validated and compared with the relationships inferred by two machine learning approaches to gene regulatory network prediction. Furthermore, the resulting predictions were assessed using domain knowledge. The proposed algorithm may be able to accurately predict relevant biological associations between genes. One of the most relevant features of this new method is the prediction of adaptive regulation thresholds for the discretization of gene expression values, which is required prior to the rule association learning process. Moreover, an important advantage consists of its low computational cost to infer association rules. The proposed system may significantly support exploratory, large-scale studies of automated identification of potentially-relevant gene expression associations.  相似文献   

20.
Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two ‘4-targeted’ and ‘16-targeted’ experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号