首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.  相似文献   

2.
Worldwide, the most two important cryptic species of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) are MEAM1 (Middle East–Asia Minor 1, “B” biotype) and MED (Mediterranean, “Q” biotype). Although both B. tabaci MEAM1 and MED are polyphagous, they differ greatly in host choice and performance on various host plants. MEAM1 prefer to settle and perform better than MED on cabbage (Brassica oleracea), for example, but the underlying mechanism is largely unexplored. In the present study, we first measured the contents of the main secondary insect-resistant substances (glucosinolates and phenolics) and main nutrients (soluble proteins, total amino acids and total nitrogen) in five cabbage genotypes. We then examined the settling and oviposition choices of MEAM1 and MED on the five cabbage genotypes, respectively. The settling and oviposition preferences of both MEAM1 and MED were negatively related to the content of total phenolics rather than to the content of glucosinolates or main nutrients. Furthermore, our results showed that MEAM1 ranked the host quality of the cabbage genotypes more accurately than MED. The results at least in part indicate that total phenolics rather than glucosinolates mediate the host choice of B. tabaci MEAM1 and MED on the five cabbage genotypes.  相似文献   

3.
Abstract Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspension, susceptibility to a baculovirus infection and expression of genes involved in the glucosinolate detoxification pathway in R xylostella larvae. Five of the cell lines grew attached to the culture flask and one cell line grew unattached as a suspension cell line. The cell lines had population doubling times ranging from IS to 23 h. Among five of the P. xylostella cell lines examined for infection of a nucleopolyhe. drovirus from Autographa californica, AcMNPV four cell lines were highly susceptible to AcMNPV infection, but one was only semi-permissive to AcMNPV infection. The production of two recombinant proteins, a β-galactosidase of bacterial origin and a secreted alkaline phosphatase of eukaryotic origin, in the R xylostella cell lines was examined in comparison with that in the cell line Sf9 which is commonly used for recombinant protein production. In the P. xylostella cell lines, expression of three important midgut genes involved in the glucosinolate detoxification pathway, including the glucosinolate sulfatase genes GSS1 and GSS2 and the sulfatase modifying factor gene SUMF1、was detected. The R xylostella cell lines developed in this study could be useful in in vitro research systems for studying insec-virus interactions and complex molecular mechanisms in glucosinolate detoxification and insect-plant interactions.  相似文献   

4.
Bemisia tabaci‐transmitted geminiviruses are one of the major threats on cassava and vegetable crops in Africa. However, to date, few studies are available on the diversity of B. tabaci and their associated endosymbionts in Africa. More than 28 species have been described in the complex of B. tabaci cryptic species; among them, 2 are invasive pests worldwide: MED and MEAM1. In order to assess the species diversity of B. tabaci in vegetable crops in Senegal, several samplings in different localities, hosts and seasons were collected and analyzed with nuclear (microsatellite) and mitochondrial (COI) markers. The bacterial endosymbiont community was also studied for each sample. Two species were detected: MED Q1 and MEAM1 B. Patterns of MED Q1 (dominance on most of the samples and sites, highest nuclear and mitochondrial diversity and broader secondary endosymbiont community: Hamiltonella, Cardinium, Wolbachia and Rickettsia), point toward a predominant resident begomovirus vector group for MED Q1 on market gardening crops. Furthermore, the lower prevalence of the second species MEAM1 B, its lower nuclear and mitochondrial diversity and a narrower secondary endosymbiont community (Hamiltonella/Rickettsia), indicate that this genetic group is exotic and results from a recent invasion in this area.  相似文献   

5.
In this study, species complex of Turkish Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations was determined by PCR‐based DNA analysis. According to phylogenetic analyses, the B. tabaci samples have been identified within three generic groups. A major part of the samples belonged to two invasive species, either Middle East–Asia Minor 1 (MEAM1) or Mediterranean (MED). In addition to these two invasive species, several samples collected from greenhouses and cotton fields have been found to be related to Middle East–Asia Minor 2 (MEAM2), which is the first record of Turkish B. tabaci species complex.  相似文献   

6.
The MEAM1 and MED species of the cryptic species complex Bemisia tabaci are important invasive pests that cause tremendous crop losses worldwide. A rapid and highly reliable molecular technique is necessary to identify these species because they are morphologically indistinguishable. Therefore, a multiple polymerase chain reaction coupled with a ligase detection reaction (PCR‐LDR) that was based on polymorphisms in the mitochondrial cytochrome oxidase I (mtCOI) gene of B. tabaci was developed to distinguish the two cryptic species. An assessment of the method indicated that PCR‐LDR provided high specificity and sensitivity in discriminating MEAM1 (SHB) and MED (SHQ) whiteflies. In field tests, PCR‐LDR genotyping was performed in one 96‐well plate to identify 93 individuals collected from 8 districts in the suburbs of Shanghai. Complete concordance was observed between PCR‐LDR and sequencing methods. The method was used to confirm that MEAM1 and MED were found in two districts, but only the MED was found in the other six districts. PCR‐LDR, which is a transplantable platform, provides an alternative method for species identification of B. tabaci at low cost.  相似文献   

7.
The tobacco whitefly Bemisia tabaci (Gennadius) cryptic species complex and of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are extensively reported as destructive pests in vegetable crops worldwide. A survey was conducted in 2011 and 2012 to determine the occurrence and genetic diversity present in the populations of these whiteflies in the major vegetable production areas of Costa Rica. Insect samples were collected from sweet pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), common bean (Phaseolus vulgaris L.) and weeds present in commercial crops either in open field or greenhouse conditions. PCR‐RFLP analysis of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI) sequences of 621 whitefly individuals confirmed the presence of the Mediterranean (MED) type of the B. tabaci and of T. vaporariorum in most sampled regions. Also, individuals of the Middle East‐Asia Minor 1 (MEAM1) type of the B. tabaci were observed in low numbers. Contingency analyses based on type of crop, geographical region, whitefly species, year of collection and production system confirmed that T. vaporariorum was the most frequent species in vegetable production areas in Costa Rica, both in greenhouses and in open fields. B. tabaci MED is likely spreading to new areas of the country, whereas B. tabaci MEAM1 was mostly absent or rarely found. Comparisons of mtCOI sequences from B. tabaci individuals revealed the presence of four B. tabaci sequence haplotypes (named MED‐i, MED‐ii, MEAM1‐i, MEAM1‐xviii) in Costa Rica, three of them identical to B. tabaci haplotypes previously reported in the Western Hemisphere and other parts of the world. Analysis of sequences of T. vaporariorum individuals revealed a more complex population with the presence of 11 haplotypes, two of which were identical to T. vaporariorum sequences reported from other countries.  相似文献   

8.
Cover Caption     
《Insect Science》2015,22(3):ii-ii
The whitefly vector of viruses Bemisia tabaci is one of the major threats on cassava and vegetable crops in Africa. More than 28 species have been described in the complex of B. tabaci cryptic species; among them, two are invasive pests worldwide (MEAM1 and MED), bearing a large and species specific endosymbiont community. To date, this is the first time that MEAM1and MED were described in Senegal together with their prevalence and associated endosymbiont community on vegetable crops (see pages 386–398). Photo by Antoine Franck, CIRAD, UMR PVBMT.  相似文献   

9.
Difficult-to-express (DTE) recombinant proteins such as multi-specific proteins, DTE monoclonal antibodies, and lysosomal enzymes have seen difficulties in manufacturability using Chinese hamster ovary (CHO) cells or other mammalian cells as production platforms. CHO cells are preferably used for recombinant protein production for their ability to secrete human-like recombinant proteins with posttranslational modification, resistance to viral infection, and familiarity with drug regulators. However, despite huge progress made in engineering CHO cells for high volumetric productivity, DTE proteins like recombinant lysosomal sulfatase represent one of the poorly understood proteins. Furthermore, there is growing interest in the use of microRNA (miRNA) to engineer CHO cells expressing DTE proteins to improve cell performance of relevant bioprocess phenotypes. To our knowledge, no research has been done to improve CHO cell production of DTE recombinant lysosomal sulfatase using miRNA. We identified miR-23a and miR-377 as miRNAs predicted to target SUMF1, an activator of sulfatases, using in silico prediction tools. Transient inhibition of CHO endogenous miR-23a/miR-377 significantly enhanced recombinant sulfatase enzyme-specific activity by ~15–21% compared to scramble without affecting cell growth. Though inhibition of miR-23a/miR-377 had no significant effect on the mRNA and protein levels of SUMF1, overexpression of miR-23a/377 caused ~30% and ~27–29% significant reduction in endogenous SUMF1 protein and mRNA expression levels, respectively. In summary, our data demonstrate the importance of using miRNA to optimize the CHO cell line secreting DTE recombinant lysosomal sulfatase.  相似文献   

10.
The whitefly Bemisia tabaci is a cryptic species complex of at least 24 genetically distinct species. Thus far, one obligate and seven facultative symbiotic bacteria have been reported from the B. tabaci species complex. Both genetic groups and infected symbionts are extremely important to estimate the pest status of B. tabaci. In this study, we collected 340 whiteflies from 39 agricultural sites, covering an entire region of the B. tabaci habitat in Japan, and examined the genotypes and symbiont community composition at subspecies level. Use of the cleaved amplified polymorphic sequence technique and mitochondrial cytochrome oxidase subunit I gene sequencing detected five genetic groups: indigenous species JpL and Asia II 6, invasive species Middle East‐Asia Minor 1 (MEAM1) and Mediterranean Subclade Q1 (MED Q1), and a genetic group previously undetected in Asia, Mediterranean Subclade Q2 (MED Q2). The genetic groups exhibited characteristic infection statuses with regard to their facultative symbionts, as observed in other countries. The endosymbiotic microbiota of the Japanese MED Q1 was different from that in neighbouring countries, but similar to that in the French or Uruguayan MED Q1. These results may indicate that Japanese MED Q1 species have not invaded from neighbouring countries, but from distant countries by international transportation. All Japanese MED Q2 species were infected with Rickettsia, some of which are regarded as conferring a female‐biased sex ratio and fitness benefit on B. tabaci. The results suggest that MED Q2 may be prevalent in Japan and neighbouring countries.  相似文献   

11.
Whiteflies possess bacterial symbionts Candidatus Portiera aleyrodidium that are housed in specialized cells called bacteriocytes and are faithfully transmitted via the ovary to insect offspring. In one whitefly species studied previously, Bemisia tabaci MEAM1, transmission is mediated by somatic inheritance of bacteriocytes, with a single bacteriocyte transferred to each oocyte and persisting through embryogenesis to the next generation. Here, we investigate the mode of bacteriocyte transmission in two whitefly species, B. tabaci MED, the sister species of MEAM1, and the phylogenetically distant species Trialeurodes vaporariorum. Microsatellite analysis supported by microscopical studies demonstrates that B. tabaci MED bacteriocytes are genetically different from other somatic cells and persist through embryogenesis, as for MEAM1, but T. vaporariorum bacteriocytes are genetically identical to other somatic cells of the insect, likely mediated by the degradation of maternal bacteriocytes in the embryo. These two alternative modes of transmission provide a first demonstration among insect symbioses that the cellular processes underlying vertical transmission of bacterial symbionts can diversify among related host species associated with a single lineage of symbiotic bacteria.  相似文献   

12.
Abstract Endosymbionts are important components of arthropod biology. The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex composed of ≥ 28 putative species. In addition to the primary endosymbiont Portiera aleyrodidarum, six secondary endosymbionts (S‐endosymbionts), Hamiltonella, Rickettsia, Wolbachia, Cardinium, Arsenophonus and Fritschea, have been identified in B. tabaci thus far. Here, we tested five of the six S‐endosymbiont lineages (excluding Fritschea) from 340 whitely individuals representing six putative species from China. Hamiltonella was detected only in the two exotic invaders, Middle East‐Asia Minor 1 (MEAM1) and Mediterranean (MED). Rickettsia was absent in Asia II 1 and MED, scarce in Asia II 3 (13%), but abundant in Asia II 7 (63.2%), China 1 (84.7%) and MEAM1 (100%). Wolbachia, Cardinium and Arsenophonus were absent in the invasive MEAM1 and MED but mostly abundant in the native putative species. Furthermore, phylogenetic analyses revealed that some S‐endosymbionts have several clades and different B. tabaci putative species can harbor different clades of a given S‐endosymbiont, demonstrating further the complexity of S‐endosymbionts in B. tabaci. All together, our results demonstrate the variation and diversity of S‐endosymbionts in different putative species of B. tabaci, especially between invasive and native whiteflies.  相似文献   

13.
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.  相似文献   

14.
Sulfatases are enzymes that hydrolyse a diverse range of sulfate esters. Deficiency of lysosomal sulfatases leads to human diseases characterized by the accumulation of either GAGs (glycosaminoglycans) or sulfolipids. The catalytic activity of sulfatases resides in a unique formylglycine residue in their active site generated by the post-translational modification of a highly conserved cysteine residue. This modification is performed by SUMF1 (sulfatase-modifying factor 1), which is an essential factor for sulfatase activities. Mutations in the SUMF1 gene cause MSD (multiple sulfatase deficiency), an autosomal recessive disease in which the activities of all sulfatases are profoundly reduced. In previous studies, we have shown that SUMF1 has an enhancing effect on sulfatase activity when co-expressed with sulfatase genes in COS-7 cells. In the present study, we demonstrate that SUMF1 displays an enhancing effect on sulfatases activity when co-delivered with a sulfatase cDNA via AAV (adeno-associated virus) and LV (lentivirus) vectors in cells from individuals affected by five different diseases owing to sulfatase deficiencies or from murine models of the same diseases [i.e. MLD (metachromatic leukodystrophy), CDPX (X-linked dominant chondrodysplasia punctata) and MPS (mucopolysaccharidosis) II, IIIA and VI]. The SUMF1-enhancing effect on sulfatase activity resulted in an improved clearance of the intracellular GAG or sulfolipid accumulation. Moreover, we demonstrate that the SUMF1-enhancing effect is also present in vivo after AAV-mediated delivery of the sulfamidase gene to the muscle of MPSIIIA mice, resulting in a more efficient rescue of the phenotype. These results indicate that co-delivery of SUMF1 may enhance the efficacy of gene therapy in several sulfatase deficiencies.  相似文献   

15.
A multiplex loop‐mediated isothermal amplification (mLAMP) assay was developed for the identification of three species of whitefly, Trialeurodes vaporariorum, Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1) and Mediterranean (MED), major pests in the greenhouse. Each of the specific LAMP primer sets was designed based on the mitochondrial cytochrome oxidase I (mtCOI) gene sequence. The mLAMP reactions using primer mixtures labelled with fluorescent dye were performed at 63°C for 60 min and centrifuged with polyethyleneimine. Thus, T. vaporariorum, MEAM1 and MED were clearly identified by the colour precipitates under UV light. The mLAMP procedure described in this study is cost‐effective and can be performed in the field not only in the laboratory, because this method is a single analysis and does not need a special gene amplification device.  相似文献   

16.
Whiteflies (Hemiptera: Aleyrodidae) are major pests of many crops worldwide. Bemisia tabaci is a cryptic species complex composed of more than 39 putative species. Understanding which putative species of B. tabaci are predominant in an area is vital for effective pest management since they may vary considerably with respect to insecticide resistance, host plant range and virus transmission. Here, for the first time, the genetic diversity, the symbiont diversity and population structure of B. tabaci in Iraq were studied. Fourteen populations were analysed using mitochondrial cytochrome C oxidase subunit 1 (mtCO1) sequencing and microsatellite genotyping. Symbiotic bacteria were identified using 16S rRNA and 23S rRNA sequencing. MtCO1 sequencing detected two putative species of B. tabaci. The predominant putative species in Iraq was Middle East-Asia Minor (MEAM) 1 subcladeB2. In addition, one individual was MEAM1-subcladeB. The second putative species was a single individual of MEAM2. The microsatellite data indicated low genetic diversity, with no biologically informative clustering. All MEAM1 individuals harboured one primary symbiont, Portiera aleyrodidarum, and most (96%) have two secondary symbionts: Hamiltonella sp. and Rickettsia sp. This study has identified the genetic diversity and population structure of B. tabaci in Iraq. Further investigation is needed to update the pest status of B. tabaci in this region. The current data, combined with investigations into the capacity of the various putative species to transmit plant viruses, especially tomato yellow leaf curl virus, will aid pest management and horticultural production.  相似文献   

17.
Bemisia tabaci is an important agricultural pest with worldwide distribution and host preference. Therefore, understanding the biology of this pest is important to devise specific pest control strategies. The antennae of herbivorous insects play an important role in the identification of hosts using plant volatiles. To understand the features of antennae in B. tabaci MEAM 1(formerly known as biotype ‘B’) and MED (formerly known as biotype ‘Q’), the morphology and distribution of the antennal sensilla were examined using scanning electron micrographs. The results showed that the average antennae length in MEAM 1 was longer than MED. No differences were observed in the number and distribution of antennal sensilla in MEAM 1 and MED antennae; each antenna had nine different types of sensilla. Both cryptic species possessed Microtrichia, Grooved surface trichodea sensilla, Chaetae sensilla, Coeloconic sensillaⅠandⅡ, Basiconic sensilla Ⅰ, Ⅱ and Ⅲ and Finger-like sensilla. This is the first report of Grooved surface trichodea sensilla and Basiconic sensilla Ⅱ on B. tabaci flies. The numbers of Chaetae sensilla were different in the females and males of MEAM 1 and MED, which females having 5 and males containing 7. The surface structure of Basiconic sensilla Ⅰ was different with MEAM 1 showing a multiple-pitted linen surface and MED showing a multiple-pitted pocking surface. Basiconic sensillaⅡ were double in one socket with the longer one having a multiple-pitted surface and the shorter one with a smooth surface. Basiconic Ⅲ and Finger-like sensillae were longer in MEAM 1 antennae than in MED antennae. Our results are expected to further the studies that link morphological characteristics to insect behavior and help devise strategies to control insect pests.  相似文献   

18.
19.
20.
Bemisia tabaci (Gennadius) is a rapidly evolving species complex, and is small in size and difficult to identify quickly and accurately. For the accurate identification and effective prevention of this species, the specific PCR method based on the mitochondrial DNA cytochrome oxidase subunit I (mt DNA COI) gene was used in the present study to evaluate rapid molecular detection technological applications for Mediterranean (MED) species. The MED was targeted and whitefly species from different regions were used as references. Fragments of the mt DNA COI gene of the MED and other closely related species were amplified with universal primers. Species-specific mitochondrial DNA cytochrome oxidase subunit I (SS-COI) primers BQLF/BQLR and BQJF/BQJR were designed from variable sites of MED and other whitefly species partial COI gene sequences. Subsequently, the lengths of target fragments were amplified by two pairs of SS-COI primers. Meanwhile, the accuracy, specificity and sensitivity of SS-COI primers were determined using various life stages of the MED and other related species collected from different locations. The primer pairs BQLF/BQLR and BQJF/BQJR generated 334 bp and 483 bp amplified fragment length respectively. Accuracy test results showed that primers can detect the MED single-head adults and also accurately detect single-egg and first instar, second instar and third instar nymphs, MED pupae, etc. Specific detection results demonstrated that the primers were able to amplify the MED but not the following species/populations: Middle East-Asia Minor 1 (MEAM1), Asia I, Asia II 1, Asia II 6 and Asia II 7, Aleurocanthus spiniferus (Quaintanca), A. camelliae, Siphoninus phillyreae, Aleuroclava rhododendri, A. thysanospermi, Aleurolobus taonabae, Dialeurodes citri and Trialeurodes vaporariorum (Westwood) in different areas. Sensitivity detection results showed that primers can detect the minimum threshold of 2,160 pg/μl and 1.38 pg/μl, respectively (equivalent to 1/1280 and 1/2000000 adult). This technique solves the problem that MED cannot be identified based on morphology. This method simultaneously adopted SS-COI PCR technological applications that improved detection accuracy and saved detection time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号