首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery that biofilms are ubiquitous among the epiphytic microflora of leaves has prompted research about the impact of biofilms on the ecology of epiphytic microorganisms and on the efficiency of strategies to manage these populations for disease control and to ensure food safety. Biofilms are likely to influence the microenvironment and phenotype of the microorganisms they harbor. However, it is also important to determine whether there are differences in the types of bacteria within biofilms compared to those outside of biofilms so as to better target microorganisms via disease control strategies. Broad-leaved endive (Cichorium endivia var. latifolia) harbors biofilms containing fluorescent pseudomonads. These bacteria can cause considerable post-harvest losses when this plant is used for manufacturing minimally processed salads. To determine whether the population structure of the fluorescent pseudomonads in biofilms is different from that outside of biofilms on the same leaves, bacteria were isolated quantitatively from the biofilm and solitary components of the epiphytic population on leaves of field-grown broad-leaved endive. Population structure was determined in terms of taxonomic identities of the bacteria isolated, in terms of genotypic profiles, and in terms of phenotypic traits related to surface colonization and biofilm formation. The results illustrate that there are no systematic differences in the composition and structure of biofilm and solitary populations of fluorescent pseudomonads, in terms of either genotypic profiles or phenotypic profiles of the strains. However, Gram-positive bacteria tended to occur more frequently within biofilms than outside of biofilms. We suggest that leaf colonization by fluorescent pseudomonads involves a flux of cells between biofilm and solitary states. This would allow bacteria to exploit the advantages of these two types of existence; biofilms would favor resistance to stressful conditions, whereas solitary cells could foster spread of bacteria to newly colonizable sites on leaves as environmental conditions fluctuate.  相似文献   

2.
Photomechanical waves (PW), the product of an intense light beam interaction with a target material, enhance molecular delivery across biological membranes and skin. The ability to deliver methylene blue (MB), a fluorescent probe and photosensitizer, into bacterial biofilms was demonstrated by applying PW on saliva-derived multi-species biofilms that were developed on agar surfaces in 24-well plates. PW were generated with a Q-switched Nd:YAG laser and were directed into the biofilms in the presence of 25 μg/ml MB. The biofilms were then irradiated with red light at 665 nm. After illumination, adherent bacteria were scraped and spread over the surface of blood agar plates. Survival fractions were calculated by counting bacterial colonies. Microbial analysis was performed via a colony lift method and a DNA checkerboard assay using whole genomic probes to 40 oral microorganisms. Visual analysis by confocal scanning laser microscopy demonstrated that the application of PW enhanced the penetration depth of MB in biofilms. Exposure to MB, PW and light led to a significant reduction of the mean levels of log10 CFU counts compared with the group that received MB and light (P = 0.006). The DNA checkerboard assay showed some benefit from PW-assisted phototargeting in 25 biofilm microorganisms relative to phototreatment alone. Our data provide a basis for further exploration and optimization of PW parameters for complete eradication of microorganisms in oral microcosm biofilms.  相似文献   

3.
Settlement of many benthic marine invertebrates is stimulated by bacterial biofilms, although it is not known if patterns of settlement reflect microbial communities that are specific to discrete habitats. Here, we characterized the taxonomic and functional gene diversity (16S rRNA gene amplicon and metagenomic sequencing analyses), as well as the specific bacterial abundances, in biofilms from diverse nearby and distant locations, both inshore and offshore, and tested them for their ability to induce settlement of the biofouling tubeworm Hydroides elegans, an inhabitant of bays and harbours around the world. We found that compositions of the bacterial biofilms were site specific, with the greatest differences between inshore and offshore sites. Further, biofilms were highly diverse in their taxonomic and functional compositions across inshore sites, while relatively low diversity was found at offshore sites. Hydroides elegans settled on all biofilms tested, with settlement strongly correlated with bacterial abundance. Bacterial density in biofilms was positively correlated with biofilm age. Our results suggest that the localized distribution of H. elegans is not determined by ‘selection’ to locations by specific bacteria, but it is more likely linked to the prevailing local ecology and oceanographic features that affect the development of dense biofilms and the occurrence of larvae.  相似文献   

4.
Enterococci, recommended at the U.S. federal level for monitoring water quality at marine recreational beaches, have been found to reside and grow within beach sands. However, the environmental and ecological factors affecting enterococcal persistence remain poorly understood, making it difficult to determine levels of fecal pollution and assess human health risks. Here we document the presence of enterococci associated with beach sediment biofilms at eight south Florida recreational beaches. Enterococcal levels were highest in supratidal sands, where they displayed a nonlinear, unimodal relationship with extracellular polymeric secretions (EPS), the primary component of biofilms. Enterococcal levels peaked at intermediate levels of EPS, suggesting that biofilms may promote the survival of enterococci but also inhibit enterococci as the biofilm develops within beach sands. Analysis of bacterial community profiles determined by terminal restriction fragment length polymorphisms showed the bacterial communities of supratidal sediments to be significantly different from intertidal and subtidal communities; however, no differences were observed in bacterial community compositions associated with different EPS concentrations. Our results suggest that supratidal sands are a microbiologically unique environment favorable for the incorporation and persistence of enterococci within beach sediment biofilms.  相似文献   

5.
Antarctic endolithic microecosystems harbour distinct biofilms. The lithic substrate and the microorganisms comprising these films are intimately linked, leading to complex mineral-microbe interactions. Hence, the microhabitats and microenvironments of these microecosystems are not only determined by the physicochemical features of the lithic substrate, but are also conditioned by the biological components of these biofilms. The Antarctic biofilms analysed in this study are characterized by the presence of extracellular polymer substances and acid microenvironments in the proximity of the cells; cyanobacteria appearing as key components. On ultrastructural analysis, these endolithic cyanobacteria showed differences in sheath organization, probably related to their spatial position in the lithic substrate. It is proposed that in this type of ecosystem, biofilm structure could favour the formation of microsites with specific physicochemical conditions appropriate for the survival of microbial communities in this extreme environment.  相似文献   

6.
Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen.  相似文献   

7.
Phototrophic biofilms are multispecies, self-sustaining and largely closed microbial ecosystems. They form macroscopic structures such as microbial mats and stromatolites. These sunlight-driven consortia consist of a number of functional groups of microorganisms that recycle the elements internally. Particularly, the sulfur cycle is discussed in more detail as this is fundamental to marine benthic microbial communities and because recently exciting new insights have been obtained. The cycling of elements demands a tight tuning of the various metabolic processes and require cooperation between the different groups of microorganisms. This is likely achieved through cell-to-cell communication and a biological clock. Biofilms may be considered as a macroscopic biological entity with its own physiology. We review the various components of some marine phototrophic biofilms and discuss their roles in the system. The importance of extracellular polymeric substances (EPS) as the matrix for biofilm metabolism and as substrate for biofilm microorganisms is discussed. We particularly assess the importance of extracellular DNA, horizontal gene transfer and viruses for the generation of genetic diversity and innovation, and for rendering resilience to external forcing to these biological entities.  相似文献   

8.
While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.  相似文献   

9.
Relatively little is known about the microbial ecology of biofilm communities or the diversity of antimicrobial molecules that they produce to regulate these communities. This study tested whether the production of antimicrobial activity in biofilm cultures is enhanced towards competing bacteria found in those biofilms. First, the production of antimicrobial activity of marine bacteria grown in biofilms was tested. Fourteen of the 105 marine isolates tested were found to produce antimicrobial factors when grown in biofilms. The antimicrobial activity produced by these isolates in biofilms was more potent and inhibited a broader range of target bacteria grown in biofilms compared to shaken liquid cultures. In a separate experiment, we found that cultivation in biofilms containing produced metabolites from an ‘inducer’ bacterium stimulated the production of antimicrobial molecules by ‘producer’ bacteria that were active against the ‘inducer’ bacterium. Overall, the study suggests that surface attached marine bacteria can target their antimicrobial activity towards competing bacteria in biofilms.  相似文献   

10.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

11.
Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north‐east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP‐associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large.  相似文献   

12.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

13.
In biofilters of recirculation aquaculture systems (RAS), nitrification by lithoautotrophic microorganisms is essential to prevent the cultivated organisms from intoxication with ammonium and nitrite. In moving-bed biofilters nitrifying microorganisms are immobilized together with heterotrophic bacteria in dense biofilms on carrier elements like plastic beads. Analyses of fatty acid profiles of these biofilms from a marine biofilter revealed a high abundance of Nitrospira-related lipid markers (8-12% of total fatty acids). Further results of a labeling experiment with (13) C-bicarbonate in mineral salts medium with 3 mM nitrite confirmed that Nitrospira is the major autotrophic nitrite oxidizer in the biofilter system. According to 16S rRNA gene sequence analyses the nitrite-oxidizing community in the biofilter consisted of at least two different representatives of Nitrospira, one of which could be successfully isolated. The marine isolate 'Ecomares 2.1' belongs to cluster IVa and showed 98.8% 16S rRNA gene sequence similarity to Nitrospira marina, whereas the enrichment 'M1 marine' is only distantly related (94.0% 16S rRNA gene sequence similarity to N. marina). In laboratory experiments, the isolate exhibited remarkable tolerances against high substrate and product concentrations (30 mM nitrite and 80 mM nitrate) as well as ammonium (50 mM). During the isolation process a strong tendency of this strain to develop biofilms became apparent. Thus, Ecomares 2.1 seems to be well adapted to the attached lifestyle in biofilters and the nitrogenous load prevailing in the effluent waters of RAS. Both members of Nitrospira could be detected by PCR-based methods in environmental samples of marine and brackish RAS biofilters and are therefore considered to be characteristic for these engineered ecosystems.  相似文献   

14.
Metal-sulfides are wide-spread in marine benthic habitats. At deep-sea hydrothermal vents, they occur as massive sulfide chimneys formed by mineral precipitation upon mixing of reduced vent fluids with cold oxygenated sea water. Although microorganisms inhabiting actively venting chimneys and utilizing compounds supplied by the venting fluids are well studied, only little is known about microorganisms inhabiting inactive chimneys. In this study, we combined 16S rRNA gene-based community profiling of sulfide chimneys from the Manus Basin (SW Pacific) with radiometric dating, metagenome (n = 4) and metaproteome (n = 1) analyses. Our results shed light on potential lifestyles of yet poorly characterized bacterial clades colonizing inactive chimneys. These include sulfate-reducing Nitrospirae and sulfide-oxidizing Gammaproteobacteria dominating most of the inactive chimney communities. Our phylogenetic analysis attributed the gammaproteobacterial clades to the recently described Woeseiaceae family and the SSr-clade found in marine sediments around the world. Metaproteomic data identified these Gammaproteobacteria as autotrophic sulfide-oxidizers potentially facilitating metal-sulfide dissolution via extracellular electron transfer. Considering the wide distribution of these gammaproteobacterial clades in marine environments such as hydrothermal vents and sediments, microbially accelerated neutrophilic mineral oxidation might be a globally relevant process in benthic element cycling and a considerable energy source for carbon fixation in marine benthic habitats.  相似文献   

15.
In the current study, five phototrophic biofilms from different Southern Europe limestone monuments were characterised by molecular techniques and cultivated under laboratory conditions. Phototrophic biofilms were collected from Orologio Tower in Martano (Italy), Santa Clara-a-Velha Monastery and Ajuda National Palace, both in Portugal, and Seville and Granada Cathedrals from Spain. The biofilms were grown under laboratory conditions and periodically sampled in order to monitor their evolution over a three-month period. Prokaryotic communities from natural samples and cultivated biofilms were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments in conjunction with clone sequencing and phylogenetic analysis. DNA-based molecular analysis of 16S rRNA gene fragments from the natural green biofilms revealed complex and different communities composition with respect to phototrophic microorganisms. The biofilms from Orologio Tower (Martano, Italy) and Santa Clara-a-Velha Monastery (Coimbra, Portugal) were dominated by the microalga Chlorella. The cyanobacterium Chroococcidiopsis was the dominating genus from Ajuda National Palace biofilm (Lisbon, Portugal). The biofilms from Seville and Granada Cathedrals (Spain) were both dominated by the cyanobacterium Pleurocapsa. The DGGE analysis of the cultivated biofilms showed that the communities developed differently in terms of species establishment and community composition during the three-month incubation period. The biofilm culture from Coimbra (Portugal) showed a remarkable stability of the microbial components of the natural community in laboratory conditions. With this work, a multiple-species community assemblage was obtained for further stone colonisation experiments.  相似文献   

16.
Biofilms are integral to many marine processes but their formation and function may be affected by anthropogenic inputs that alter environmental conditions, including fertilisers that increase nutrients. Density composition and connectivity of biofilms developed in situ (under ambient and elevated nutrients) were compared using 454-pyrosequencing of the 16S gene. Elevated nutrients shifted community composition from bacteria involved in higher processes (eg Pseudoalteromonas spp. invertebrate recruitment) towards more nutrient-tolerant bacterial species (eg Terendinibacter sp.). This may enable the persistence of biofilm communities by increasing resistance to nutrient inputs. A core biofilm microbiome was identified (predominantly Alteromonadales and Oceanospirillales) and revealed shifts in abundances of core microbes that could indicate enrichment by fertilisers. Fertiliser decreased density and connectivity within biofilms indicating that associations were disrupted perhaps via changes to energetic allocations within the core microbiome. Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities.  相似文献   

17.
Escherichia coli biotype O104:H4 recently caused the deadliest E. coli outbreak ever reported. Based on prior results, it was hypothesized that compounds inhibiting biofilm formation by O104:H4 would reduce its pathogenesis. The nonionic surfactants polysorbate 80 (PS80) and polysorbate 20 (PS20) were found to reduce biofilms by ≥ 90% at submicromolar concentrations and elicited nearly complete dispersal of preformed biofilms. PS80 did not significantly impact in vivo colonization in a mouse infection model; however, mice treated with PS80 exhibited almost no intestinal inflammation or tissue damage while untreated mice exhibited robust pathology. As PS20 and PS80 are classified as ‘Generally Recognized as Safe’ (GRAS) compounds by the Food and Drug Administration (FDA), these compounds have clinical potential to treat future O104:H4 outbreaks.  相似文献   

18.
Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen.  相似文献   

19.
Biofilm could be defined as a complex communities of microorganisms seen affixed to surfaces, they form clusters without sticking to any surface and buried firmly in an extracellular matrix (ECM). This matrix is formed by microorganisms in the formation of either extracellular polymeric substances (EPSS) or extracellular polymer. Many reviews have addressed the negative consequences of biofilm production in the food industry, among which we talk about biofilms being responsible for spoilage microorganisms and foodborne pathogens such as Listeria monocytogenes, Bacillus cereus etc. These contamination could be linked to biofilms presence in the processing plant. Although researches have tried conferring solutions to these challenges in the food industry, however, in this review we have tried to focus on the positive impact of biofilms formed in the food industry. It is critically expedient while trying to find the solution to the challenges of biofilm in the food industry to develop and give a major focus on the advantages and positive impact biofilm has in the food industry, which has been greatly neglected. Hence in this article, we have highlighted some positive impacts of biofilms formed in the food industry, like enhancing plant health and productivity of food products, as an agent of water and wastewater treatment in the food industry, as a tool in reducing the amount of excess sludge in the wastewater treatment plant. The development of edible biofilms, fermented food products and the production of biodegradable food packaging are also part of biofilms beneficial roles in the food industries.  相似文献   

20.
To fully understand how plastic is affecting the ocean, we need to understand how marine life interacts directly with it. Besides their ecological relevance, microbes can affect the distribution, degradation and transfer of plastics to the rest of the marine food web. From amplicon sequencing and scanning electron microscopy, we know that a diverse array of microorganisms rapidly associate with plastic marine debris in the form of biofouling and biofilms, also known as the “Plastisphere.” However, observation of multiple microbial interactions in situ, at small spatial scales in the Plastisphere, has been a challenge. In this issue of Molecular Ecology Resources, Schlundt et al. apply the combination labelling and spectral imaging – fluorescence in situ hybridization to study microbial communities on plastic marine debris. The images demonstrate the colocalization of abundant bacterial groups on plastic marine debris at a relatively high taxonomic and spatial resolution while also visualizing biofouling of eukaryotes, such as diatoms and bryozoans. This modern imaging technology provides new possibilities to address questions regarding the ecology of marine microbes on plastic marine debris and describe more specific impacts of plastic pollution in the marine food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号