首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
高效降解木质纤维素的白蚁肠道微生物组   总被引:2,自引:0,他引:2  
李丹红  王誉  杨红 《微生物学报》2017,57(6):876-884
木食性白蚁是自然界木质纤维素的高效降解者,在长期进化过程中白蚁与其肠道微生物组协同作用发展出不同的纤维素降解机制。木食性白蚁具有分别来源于白蚁和共生微生物的两套纤维素酶系统。在低等白蚁中,木质颗粒经过白蚁前、中肠分泌的内源性酶初步消化后,在后肠共生鞭毛虫中被降解为乙酸、二氧化碳和氢。高等木食性白蚁在进化中丢失了鞭毛虫,木质颗粒经白蚁自身分泌的酶初步消化后,在后肠大量共生细菌的帮助下被有效降解。培菌类白蚁利用其菌圃中的蚁巢伞菌和肠道微生物协同作用降解木质纤维素。共生微生物在白蚁的氮素固定与循环、中间产物代谢及纤维素降解等过程中发挥了重要作用。学习和模拟白蚁高效降解木质纤维素的体系,对生物质能源的产业化发展具有积极的意义。  相似文献   

2.
白蚁与微生物的共生关系是目前较受关注的研究热点,其肠道及巢内的共生微生物在降解木质纤维素的过程中扮演着重要的角色。放线菌是这些共生微生物中的重要一类,广泛存在于肠道、蚁巢及其周围土壤中,目前已探明共生放线菌在参与白蚁碳氮循环及保护巢群免受外来病菌侵染等方面发挥着极大的作用。近年来,人们利用分子生物学技术鉴定了部分共生放线菌的类群,发现了许多具应用前景的新放线菌及相关酶和代谢产物。因此,研究与白蚁相关的放线菌不仅有助于人们了解白蚁共生菌群落间的互作及其与宿主间的关系,而且对人类开发自然资源也有较大的帮助。本文对白蚁共生放线菌的研究进展作一综述,供同行参考。  相似文献   

3.
A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms -- termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut.  相似文献   

4.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

5.
Recently we discovered two novel, deeply branching lineages in the domain Bacteria from termite guts by PCR-based analyses of 16S rRNA (Y. Hongoh, P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn, and T. Kudo, Appl. Environ. Microbiol. 71:6590-6599, 2005). Here, we report on the specific detection of these bacteria, the candidate phylum TG3 (Termite Group 3) and a subphylum in the phylum Fibrobacteres, by fluorescence in situ hybridization in the guts of the wood-feeding termites Microcerotermes sp. and Nasutitermes takasagoensis. Both bacterial groups were detected almost exclusively from the luminal fluid of the dilated portion in the hindgut. Each accounted for approximately 10% of the total prokaryotic cells, constituting the second-most dominant groups in the whole-gut microbiota. The detected cells of both groups were in undulate or vibroid forms and apparently resembled small spirochetes. The cell sizes were 0.2 to 0.4 by 1.3 to 6.0 microm and 0.2 to 0.3 by 1.3 to 4.9 microm in the TG3 and Fibrobacteres, respectively. Using PCR screenings with specific primers, we found that both groups are distributed among various termites. The obtained clones formed monophyletic clusters that were delineated by the host genus rather than by the geographic distance, implying a robust association between these bacteria and host termites. TG3 clones were also obtained from a cockroach gut, lake sediment, rice paddy soil, and deep-sea sediments. Our results suggest that the TG3 and Fibrobacteres bacteria are autochthonous gut symbionts of various termites and that the TG3 members are also widely distributed among various other environments.  相似文献   

6.
Abstract: In several aspects termites are a fascinating group of insects having attracted the interest of many researchers. They exhibit a complex social behavior and caste differentiation occurring elsewhere only among the hymenoptera. In an enlarged part of the hindgut, the paunch, termites have established a unique symbiotic association with prokaryotic and eukaryotic microorganisms. A similar flora is also found in wood-eating roaches of the genus Cryptocercus . The study of symbiosis between termites and their intestinal microbes is of general interest, because due to this symbiotic interaction termites can feed on complex biopolymers such as wood. Flagellates and bacteria occur in the gut of lower termites, while higher termites possess only bacteria. In particular spirochetes are abundant in the termite gut. Apart from spirochetes and other more common bacteria, actinomycetes, yeasts and fungi have also been isolated from different species of termites. This review summarizes the distinct role of the intestinal flora in degradation of wood components such as cellulose, hemicellulose and lignin.  相似文献   

7.
Recently we discovered two novel, deeply branching lineages in the domain Bacteria from termite guts by PCR-based analyses of 16S rRNA (Y. Hongoh, P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn, and T. Kudo, Appl. Environ. Microbiol. 71:6590-6599, 2005). Here, we report on the specific detection of these bacteria, the candidate phylum TG3 (Termite Group 3) and a subphylum in the phylum Fibrobacteres, by fluorescence in situ hybridization in the guts of the wood-feeding termites Microcerotermes sp. and Nasutitermes takasagoensis. Both bacterial groups were detected almost exclusively from the luminal fluid of the dilated portion in the hindgut. Each accounted for approximately 10% of the total prokaryotic cells, constituting the second-most dominant groups in the whole-gut microbiota. The detected cells of both groups were in undulate or vibroid forms and apparently resembled small spirochetes. The cell sizes were 0.2 to 0.4 by 1.3 to 6.0 μm and 0.2 to 0.3 by 1.3 to 4.9 μm in the TG3 and Fibrobacteres, respectively. Using PCR screenings with specific primers, we found that both groups are distributed among various termites. The obtained clones formed monophyletic clusters that were delineated by the host genus rather than by the geographic distance, implying a robust association between these bacteria and host termites. TG3 clones were also obtained from a cockroach gut, lake sediment, rice paddy soil, and deep-sea sediments. Our results suggest that the TG3 and Fibrobacteres bacteria are autochthonous gut symbionts of various termites and that the TG3 members are also widely distributed among various other environments.  相似文献   

8.
The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis.  相似文献   

9.
The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected.  相似文献   

10.
Abstract The digestion of cellulose by fungus-growing termites involves a complex of different organisms, such as the termites themselves, fungi and bacteria. To further investigate the symbiotic relationships of fungus-growing termites, the microbial communities of the termite gut and fungus combs of Odontotermes yunnanensis were examined. The major fungus species was identified as Termitomyces sp. To compare the micro-organism diversity between the digestive tract of termites and fungus combs, four polymerase chain reaction clone libraries were created (two fungus-targeted internal transcribed spacer [ITS]– ribosomal DNA [rDNA] libraries and two bacteria-targeted 16S rDNA libraries), and one library of each type was produced for the host termite gut and the symbiotic fungus comb. Results of the fungal clone libraries revealed that only Termitomyces sp. was detected on the fungus comb; no non-Termitomyces fungi were detected. Meanwhile, the same fungus was also found in the termite gut. The bacterial clone libraries showed higher numbers and greater diversity of bacteria in the termite gut than in the fungus comb. Both bacterial clone libraries from the insect gut included Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, Nitrospira, Deferribacteres, and Fibrobacteres, whereas the bacterial clone libraries from the fungal comb only contained Firmicutes, Bacteroidetes, Proteobacteria, and Acidobacteris.  相似文献   

11.
Wolbachia are endosymbiotic bacteria that may alter the reproductive mechanisms of arthropod hosts. Eusocial termites provide considerable scope for Wolbachia studies owing to their ancient origin, their great diversity and their considerable ecological, biological and behavioral plasticity. This article describes the phylogenetic distribution of Wolbachia infecting termites of the Cubitermes genus, which are particularly abundant soil-feeders in equatorial Africa. Fourteen colonies of the Cubitermes sp. affinis subarquatus complex of species were screened using five bacterial genes (wsp, ftsZ, coxA, fbpA and 16S rRNA genes) and a striking diversity of Wolbachia strains was identified within these closely related species. In the host complex, three Wolbachia variants were found that were not in the super groups usually reported for termites (F and H), each infecting one or two Cubitermes species.  相似文献   

12.
Nitrogenase activity, abundance of diazotrophic bacteria, and structural and functional parameters have been determined in microbial complexes of three populations of the termite Reticulitermes lucifugus and their nest materials. These data have been used for comparative analysis of nitrogen-fixing microorganism communities in termite guts and in nest materials from different termite populations. Similarities in the structure and other parameters of these communities have been revealed. The taxonomic composition of microbial communities differs among the populations, but the functional properties of these communities are almost identical. It is concluded that no symbiotic (mutualistic) relationship exists between nitrogen-fixing intestinal bacteria and their host termites.  相似文献   

13.
【背景】培菌白蚁是属于白蚁科的一类与鸡枞菌属真菌共生的高等白蚁,其与体内肠道微生物和体外菌圃微生物形成三维共生体系。【目的】分析培菌白蚁菌圃和粪便的微生物多样性,并与肠道微生物进行比较。【方法】通过Illumina MiSeq高通量测序方法对培菌白蚁菌圃和粪便样品进行细菌16S rRNA基因和真菌ITS测序分析。【结果】高通量测序获得培菌白蚁菌圃和粪便样品细菌和真菌的有效序列和OTU数目。5个样品细菌OTU数目在90-199之间,而真菌OTU在10-58之间,细菌的种类多样性明显大于真菌。不论是细菌还是真菌,粪便样品的OTU数目多于菌圃样品。经物种分类分析,菌圃样品主要优势细菌是变形菌门(Proteobacteria),其相对含量超过82.4%;其次是拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes);粪便样品中优势细菌为拟杆菌门,其次是变形菌门,粪便优势菌属为别样杆菌属和营发酵单胞菌属,这与培菌白蚁肠道菌多样性组成一致。培菌白蚁菌圃和粪便样品共生真菌主要为担子菌门(Basidiomycota)和子囊菌门(Ascomycota)。菌圃优势真菌为鸡枞菌属(Termitomyces),相对含量在51.83%以上,菌圃中还鉴定到炭角菌属(1%,Xylaria)。【结论】为今后培菌白蚁-体内外微生物共生关系研究以及微生物的分离培养提供了依据和参考。  相似文献   

14.
The candidate phylum 'Termite Group 1' (TG1) of bacteria, which is abundant in termite guts but has no culturable representative, was investigated with respect to the in situ localization, distribution, and diversity. Based on the 16S rRNA gene sequence analyses and FISH in termite guts, a number of lineages of TG1 members were identified as endosymbionts of a variety of gut flagellated protists from the orders Trichonymphida, Cristamonadida, and Oxymonadida that are mostly unique to termites. However, the survey in various environments using specific PCR primers revealed that TG1 members were also present in termites, a cockroach, and the bovine rumen that typically lack these protist orders. Most of the TG1 members from gut flagellates, termites, cockroaches, and the rumen formed a monophyletic subcluster that showed a shallow branching pattern in the phylogenetic tree, suggesting their recent diversification. Although endosymbionts of the same protist genera tended to be closely related, the endosymbiont lineages were often independent of the higher level classifications of their host protist and were dispersed in the phylogenetic tree. It appears that their cospeciation is not the sole rule for the diversification of TG1 members of endosymbionts.  相似文献   

15.
Termites digest wood and other lignocellulosic substrates with the help of their intestinal microbiota. While the functions of the symbionts in the digestive process are slowly emerging, the origin of the bacteria colonizing the hindgut bioreactor is entirely unknown. Recently, our group discovered numerous representatives of bacterial lineages specific to termite guts in a closely related omnivorous cockroach, but it remains unclear whether they derive from the microbiota of a common ancestor or were independently selected by the gut environment. Here, we studied the bacterial gut microbiota in 34 species of termites and cockroaches using pyrotag analysis of the 16S rRNA genes. Although the community structures differed greatly between the major host groups, with dramatic changes in the relative abundances of particular bacterial taxa, we found that the majority of sequence reads belonged to bacterial lineages that were shared among most host species. When mapped onto the host tree, the changes in community structure coincided with major events in termite evolution, such as acquisition and loss of cellulolytic protists and the ensuing dietary diversification. UniFrac analysis of the core microbiota of termites and cockroaches and construction of phylogenetic tree of individual genus level lineages revealed a general host signal, whereas the branching order often did not match the detailed phylogeny of the host. It remains unclear whether the lineages in question have been associated with the ancestral cockroach since the early Cretaceous (cospeciation) or are diet-specific lineages that were independently acquired from the environment (host selection).  相似文献   

16.
Termites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut of Shelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon-the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of the Bacteroidetes, Firmicutes (mainly Clostridia), and some Deltaproteobacteria. Spirochaetes and Fibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.  相似文献   

17.
Sacchi L 《Parassitologia》2004,46(1-2):19-24
This paper reviews the Author's contribution to the knowledge of the ultrastructural basis of the prokaryote-eukaryote interactions in different models assessed by an ultrastructural approach. In agreement with the hypothesis of the origin of eukaryotic cells, which are chimeras of several prokaryotes with different morpho-functional specializations, symbiosis had major consequence for evolution of life. In Arthropods, one of the most successful lifestyles, the presence of endosymbiotic prokaryotes, plays an important role in their metabolism. In some cases, genome integration has occurred in the endosymbiotic relationships with the host, proving that intracellular symbiosis is not merely a nutritional supplement. Intracellular symbiotic bacteria are also described in nematodes. In particular, the presence of intracellular Wolbachia in filariae, even if its function is not yet completely known, influences positively the reproductive biology and the survival of the host, as proved by antibiotic treatment against this bacterium. The ultrastructural images reported in this review were obtained using different species of cockroaches, termites, ticks and filarial nematodes. The traditional methods of transmission (TEM), scansion (SEM) and immuno electron microscopy were used. In addition, also freeze-fracture and deep-etching techniques were employed. The cockroaches and the primitive termite Mastotermes darwiniensis host symbiotic bacteria in the ovary and in specialized cells (bacteriocytes) of the fat body. These bacteria have the typical cell boundary profile of gram-negative bacteria and are enveloped in a vacuolar membrane produced by the host cell. Molecular sequence data of 16S rDNA of endosymbionts of five species of cockroaches and M. darwiniensis indicate that they are members of the Flavobacteria-bacteroides group and that the infection occurred in an ancestor common to cockroaches and termites probably after the end of the Paleozoic (250 Ma BP). The symbiotic bacteria are transmitted transovarially and, during embryogenesis, they are integrated into the morphogenetic processes. In particular, we were able to demonstrate that the origin of the bacteriocyte should be looked for in the cells of the haemocyte line (embryonic plasmatocytes). The eggs are infected by the bacteria emerging from the bacteriocytes of the ovaric fat body and, at the end of the vitellogenesis, they are actively phagocytized by the egg membrane. In filarial nematodes, intracellular bacteria belonging to the genus Wolbachia have been described: they have evolved an obligatory mutualistic association with their host. In fact, antibiotic treatments lead to the clearance of bacteria and this loss produces a negative impact on reproduction and survival of the filarial host. We evidenced, by TEM, the degenerative events occurring during the embriogenesis of Brugia pahangi and Dirofilaria immitis after tetracycline treatment. The data suggest that the Wolbachia play a direct role in worm metabolism. Finally, a new additional model of the prokaryote-eukaryote interaction has been described: we have recently discovered a new intracellular alpha-proteobacterium, named Iric ES1, which resides in the ovarian tissues of the tick Ixodes ricinus. The intriguing characteristic of this bacterium is its ability to invade and consume the ovaric mitochondria. From an evolutionary perspective, it is interesting to note that Iric ES1 enters mitochondria in a similar way to that employed by the "predatory" bacterium Bdellovibrio bacteriovorus.  相似文献   

18.
低等白蚁肠道共生微生物的多样性及其功能   总被引:7,自引:0,他引:7  
低等白蚁肠道里存在着复杂的微生物区系,包括真核微生物鞭毛虫和原核生物,细菌及古细菌。低等白蚁的后肠以特别膨大的囊形胃及其氢氧浓度的明显梯度分布和丰富的微生物区系为特征,是白蚁进行木质纤维素消化的主要器官。后肠内的鞭毛虫能将纤维素水解并发酵为乙酸,二氧化碳和氢,为白蚁提供营养和能源。系统发育研究表明,低等白蚁肠道共生细菌的主要类群为白蚁菌群1、螺旋体、拟杆菌,低G C mol%含量的革兰氏阳性菌和紫细菌等。而古细菌主要为甲烷短杆菌属的产甲烷菌。共生原核生物与二氧化碳的还原和氮的循环等代谢有关。但肠道共生微生物的具体功能和作用机制还有待进一步的揭示。  相似文献   

19.
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically ‘lower termites’ are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood‐feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus‐level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host‐specific distribution of the bacterial lineages in termite guts are best explained by diet‐related differences in the availability of microhabitats and functional niches.  相似文献   

20.
白蚁菌圃存在于白蚁巢中,具有硬而脆的多孔结构,是特殊的真菌生存环境。当有白蚁在白蚁巢内活动时,蚁巢伞Termitomyces是菌圃上的优势菌;当白蚁巢被废弃,炭角菌Xylaria成为菌圃上的优势真菌。菌圃中还存在其他微生物如无性型真菌(anamorphic fungi)和酵母等。菌圃中的真菌很多具有潜在药用价值或其他经济价值。从蚁巢伞、炭角菌等主要真菌类群出发,结合分子生态学研究菌圃真菌多样性的方法,综述了白蚁菌圃真菌多样性的研究进展,揭示了目前的研究热点及存在的问题,并针对这些问题提出可能的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号