首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of Propionibacterium freudenreichii was studied with glycerol, lactate, and propionate as energy sources and a three-electrode poised-potential amperometric electrode system with hexacyanoferrate (III) as mediator. In batch culture experiments with glycerol and lactate as substrates, hexacyanoferrate (III) was completely reduced. Growth yields increased and the fermentation patterns were shifted towards higher acetate formation with increasing hexacyanoferrate (III) concentrations (0.25–8.0 mM). In experiments with regulated electrodes, glycerol, lactate, and propionate were oxidized to acetate and CO2, and the electrons were quantitatively transferred to the working electrode. Growth yields of 29.0, 13.4 and 14.2 g cell material per mol were calculated, respectively. The high cell yield obtained during propionate oxidation cannot be explained solely by substrate level phosphorylation indicating that additional energy was conserved via electron transport phosphorylation. Furthermore, this result indicated complete reversibility of the methyl-malonyl-CoA pathway in propionic acid bacteria.  相似文献   

2.
Strain X4 was isolated several years ago from an anaerobic mesophilic plant treating vegetable cannery waste waters. It was the first example of propionic fermentation from ethanol. Morphologic and physiologic characterizations of the strain are presented here. This strain is described as type strain of a new species, Clostridium neopropionicum sp. nov. Whole cells of strain X4 ferment [1-13C]ethanol and CO2 to [2-13C]propionate, [1-13C]acetate and [2-13C]propanol, suggesting the absence of a randomizing pathway during the propionate formation. Enzymes involved in this fermentation were assayed in cell-free extracts of cells grown with ethanol as sole substrate. Alcohol dehydrogenase, aldehyde dehydrogenase, phosphate acetyl transferase, acetate kinase, pyruvate synthase, lactate dehydrogenases, and the enzymes of the acrylate pathway were detected at activities sufficient to be involved in ethanol fermentation. The same pathway may be used for the degradation of lactate or acrylate to acetate.  相似文献   

3.
Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation with air was used as the reference). The maximum specific growth rate was high (0.78 to 0.91 h−1) under all aeration conditions but decreased with increasing aeration, and more than 90% of the glucose was converted to lactate. However, a shift in by-product formation was observed. Increasing aeration resulted in acetate, CO2, and acetoin replacing formate and ethanol as end products. Under microaerobic conditions, growth came to a gradual halt, although more than 60% of the glucose was still left. A decline in growth was not observed during microaerobic cultivation when acetate was added to the medium. We hypothesize that the decline in growth was due to a lack of acetyl coenzyme A (acetyl-CoA) needed for fatty acid synthesis since acetyl-CoA can be synthesized from acetate by means of acetate kinase and phosphotransacetylase activities.  相似文献   

4.
An unusual propionigenic bacterium was isolated from the intestinal tract of the soil-feeding termite Thoracotermes macrothorax. Strain TmPN3 is a motile, long rod that stains gram-positive, but reacts gram-negative in the KOH test. It forms terminal endospores and ferments lactate, glucose, lactose, fructose, and pyruvate to propionate and acetate via the methyl-malonyl-CoA pathway. Propionate and acetate are formed at a ratio of 2:1, typical of most propionigenic bacteria. Under a H2/CO2 atmosphere, the fermentation product pattern of glucose, fructose, and pyruvate shifts towards propionate formation at the expense of acetate. Cell suspensions reduce oxygen with lactate, glucose, glycerol, or hydrogen as electron donor. In the presence of oxygen, the product pattern of lactate fermentation shifts from propionate to acetate production. 16S rRNA gene sequence analysis showed that strain TmPN3 is a firmicute that clusters among the Acidaminococcaceae, a subgroup of the Clostridiales comprising obligately anaerobic, often endospore-forming bacteria that possess an outer membrane. Based on phenotypic differences and less than 92% sequence similarity to the 16S rRNA gene sequence of its closest relative, the termite hindgut isolate Acetonema longum, strain TmPN3T is proposed as the type species of a new genus, Sporotalea propionica gen. nov. sp. nov. (DSM 13327T, ATCC BAA-626T).  相似文献   

5.
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode. After 1 week of growth under these conditions, sulfate was excluded from the incoming medium. The sulfate concentration in the growth vessel decreased exponentially from 4.1 mM to 2.5 μM. The coculture consumed oxygen effectively, and no residual oxygen was detected during either growth mode in which oxygen was supplied. The proportion of D. oxyclinae cells in the coculture as determined by in situ hybridization decreased from 86% under anaerobic conditions to 70% in the microaerobic sulfate-reducing mode and 34% in the microaerobic sulfate-depleted mode. As determined by the most-probable-number (MPN) method, the numbers of viable D. oxyclinae cells during the two microaerobic growth modes decreased compared to the numbers during the anaerobic growth mode. However, there was no significant difference between the MPN values for the two modes when oxygen was supplied. The patterns of consumption of electron donors and acceptors suggested that when oxygen was supplied in the absence of sulfate and thiosulfate, D. oxyclinae performed incomplete aerobic oxidation of lactate to acetate. This is the first observation of oxygen-dependent growth of a sulfate-reducing bacterium in the absence of either sulfate or thiosulfate. Cells harvested during the microaerobic sulfate-depleted stage and exposed to sulfate and thiosulfate in a respiration chamber were capable of anaerobic sulfate and thiosulfate reduction.  相似文献   

6.
An on-line technique, based on measuring the increase in pressure due to CO2 release in a closed air-tight reactor, was used to evaluate the fermentation of lactate by propionibacteria. The method was applied to batch cultures of Propionibacterium shermanii grown in yeast extract/sodium lactate medium containing lactate as a carbon source under micro-aerophilic conditions. Gas pressure evolution was compared both with substrate consumption and metabolites production and with acidification and growth. Linear relationships were found between gas pressure variation, lactate consumption and propionate and acetate production. The technique also enabled the evaluation of total CO2 produced, by taking account of pressure, oxygen and pH measurements. These results tend to show that this simple and rapid method could be useful to monitor propionic acid bacteria growth.  相似文献   

7.
Propionic acid and its sodium salt have long been used as additives in poultry feed to reduce microbial populations, including Salmonella spp. Propionic acids in poultry feed may have a potential role in inhibiting growth of Salmonella in the chicken intestine. In this study, we determined growth response of a Salmonella typhimurium poultry isolate to propionic acid and sodium propionate under aerobic and anaerobic conditions. Growth rate consistently decreased with the addition of greater concentrations of either propionic acid or sodium propionate. The extent of growth inhibition was much greater with propionic acid than the sodium form. Media pH decreased only with addition of propionic acid. Growth inhibition was more effective under anaerobic growth conditions with either propionic acid or sodium propionate. When determined at the same pH level, growth rate was significantly lowered by addition of 25 mM of either propionate or sodium propionate alone, and also by the decrease in pH levels (P<0.05). These results showed that growth inhibition of S. typhimurium by propionic acid or sodium propionate is greatly enhanced by pH decrease, and to lesser extent by anaerobiosis. We also found that sodium propionate was more inhibitory for growth of S. typhimurium than propionic acid when compared at the same pH levels.  相似文献   

8.
Summary The production of organic acids (acetate, lactate, and propionate) by the anaerobic, ruminal bacteriumSelenomonas ruminantium HD4 was investigated in both glucose-limited and glucose-sufficient (phosphate-limited) continuous cultures. The fermentation pattern of products exhibited a shift upon release of glucose limitation from acetate and propionate to lactate at a dilution rate of 0.2 h–1. Glucose sufficiency brought about two-to fourfold increase in specific glucose utilization rate, lactate productivity, and lactate yield relative to glucose-limited growth conditions. The increased lactate production under glucose-sufficient growth conditions was attributed to the overutilization of excess glucose.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

9.
Iron-reducing bacteria have been reported to reduce humic acids and low-molecular-weight quinones with electrons from acetate or hydrogen oxidation. Due to the rapid chemical reaction of amorphous ferric iron with the reduced reaction products, humic acids and low-molecular-weight redox mediators may play an important role in biological iron reduction. Since many anaerobic bacteria that are not able to reduce amorphous ferric iron directly are known to transfer electrons to other external acceptors, such as ferricyanide, 2,6-anthraquinone disulfonate (AQDS), or molecular oxygen, we tested several physiologically different species of fermenting bacteria to determine their abilities to reduce humic acids. Propionibacterium freudenreichii, Lactococcus lactis, and Enterococcus cecorum all shifted their fermentation patterns towards more oxidized products when humic acids were present; P. freudenreichii even oxidized propionate to acetate under these conditions. When amorphous ferric iron was added to reoxidize the electron acceptor, humic acids were found to be equally effective when they were added in substoichiometric amounts. These findings indicate that in addition to iron-reducing bacteria, fermenting bacteria are also capable of channeling electrons from anaerobic oxidations via humic acids towards iron reduction. This information needs to be considered in future studies of electron flow in soils and sediments.  相似文献   

10.
Homoacetogenesis is an important potential hydrogen sink in acetogenesis, in which hydrogen is used to reduce carbon dioxide to acetate. So far the acetate production from homoacetogenesis, especially its kinetics, has not been given sufficient attention. In this work, enhanced production of acetate from anaerobic conversion of glucose through coupling glucose fermentation and homoacetogenesis is investigated with both experimental and mathematical approaches. Experiments are conducted to explore elevated acetate production in a coupled anaerobic system. Acetate production could be achieved by homoacetogenesis with a relative high acetate yield under mixed fermentation conditions. With the experimental observations, a kinetic model is formulated to describe such a homoacetogenic process. The maximum homoacetogenic rate (km,homo) is estimated to be 28.5 ± 1.7 kg COD kg−1 COD day−1 with an uptake affinity constant of 3.7 × 10−5 ± 3.1 × 10−6 kg COD m−3. The improved calculation of homoacetogenic kinetics by our approach could correct the underestimation of homoacetogenesis in anaerobic fermentation processes, as it often occurs in these systems supported by literature analysis. The model predictions match the experimental results in different cases well and provide insights into the dynamics of anaerobic glucose conversion and acetate production. Furthermore, acetate production via homoacetogenesis increases by about 40% through utilizing the fed‐batch coupling system, attributed to a balance between the hydrogen production in the acetogenesis phase and the hydrogen consumption in the homoacetogenesis phase. This work provides an effective way for increased anaerobic acetate production, and gives us a better understanding about the homoacetogenic kinetics in the anaerobic fermentation process. Biotechnol. Bioeng. 2011;108: 345–353. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Hexamita sp. is an amitochondriate free-living diplomonad which inhabits O2-limited environments, such as the deep waters and sediments of lakes and marine basins. 13C nuclear magnetic resonance spectroscopy reveals ethanol, lactate, acetate, and alanine as products of glucose fermentation under microaerobic conditions (23 to 34 μM O2). Propionic acid and butyric acid were also detected and are believed to be the result of fermentation of alternative substrates. Production of organic acids was greatest under microaerobic conditions (15 μM O2) and decreased under anaerobic (<0.25 μM O2) and aerobic (200 to 250 μM O2) conditions. Microaerobic incubation resulted in the production of high levels of oxidized end products (70% acetate) compared to that produced under anoxic conditions (20% acetate). In addition, data suggest that Hexamita cells contain the arginine dihydrolase pathway, generating energy from the catabolism of arginine to citrulline, ornithine, NH4+, and CO2. The rate of arginine catabolism was higher under anoxic conditions than under microaerobic conditions. Hexamita cells were able to grow in the absence of a carbohydrate source, albeit with a lower growth rate and yield.  相似文献   

12.
Abstract

Vitamin B12 and propionic acid that were simultaneous produced by Propionibacterium freudenreichii are both favorable chemicals widely used in food preservatives, medicine, and nutrition. While the carbon source and propionic acid accumulation reflected fermentation efficiency. In this study, using corn stalk as a carbon source and fed-batch fermentation process in an expanded bed adsorption bioreactor was studied for efficient and economic biosynthesis of acid vitamin B12 and propionic. With liquid hot water pretreated corn stalk hydrolysates as carbon source, 28.65?mg L?1 of vitamin B12 and 17.05?g L?1 of propionic acid were attained at 168?h in batch fermentation. In order to optimize the fermentation outcomes, fed-batch fermentation was performed with hydrolyzed corn stalk in expanded bed adsorption bioreactor (EBAB), giving 47.6?mg L?1 vitamin B12 and 91.4?g L?1 of propionic acid at 258?h, which correspond to product yields of 0.37?mg g?1 and 0.75?g g?1, respectively. The present study provided a promising strategy for economically sustainable production of vitamin B12 and propionic acid by P. freudenreichii fermentation using biomass cornstalk as carbon source and expanded bed adsorption bioreactor.  相似文献   

13.
A comparative study was carried out in anaerobic batch cultures on 20 g/l of either glycerol or glucose using two propionibacteria strains, Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. In all cases, fermentation end-products were the same and consisted of propionic acid as the major product, acetic acid as the main by-product and two minor metabolites, n-propanol and succinic acid. Evidence was provided that greater production of propionic acid by propionibacteria was obtained with glycerol as carbon and energy sources. P. acidipropionici showed higher efficiency in glycerol conversion to propionic acid with a faster substrate consumption (0.64 g l−1 h−1) and a higher propionic acid production (0.42 g l−1 h−1 and 0.79 mol/mol). The almost exclusive production of propionic acid from glycerol by this bacterium suggested an homopropionic tendency of this fermentation. Acetic acid final concentration was two times lower on glycerol (2 g/l) than on glucose (4 g/l) for both micro-organisms. P. freudenreichii ssp. shermanii exhibited a glycerol fermentation pattern typical of non-associated glycerol-consumption-product formation. This could indicate a particular metabolism for P. freudenreichii ssp. shermanii oriented towards the production of other specific components. These results tend to show that glycerol could be an excellent alternative to conventional carbon sources such as carbohydrates for propionic acid production. Received: 21 May 1999 / Accepted: 1 November 1999  相似文献   

14.
Propionic acid is currently produced mainly via petrochemicals, but there is increasing interest in its fermentative production from renewable biomass. However, the current propionic acid fermentation process suffers from low product yield and productivity. In this work, the gene encoding phosphoenolpyruvate carboxylase (PPC) was cloned from Escherichia coli and expressed in Propionibacterium freudenreichii. PPC catalyzes the conversion of phosphoenolpyruvate to oxaloacetate with the fixation of one CO2. Its expression in P. freudenreichii showed profound effects on propionic acid fermentation. Compared to the wild type, the mutant expressing the ppc gene grew significantly faster, consumed more glycerol, and produced propionate to a higher final titer at a faster rate. The mutant also produced significantly more propionate from glucose under elevated CO2 partial pressure. These effects could be attributed to increased CO2 fixation and resulting changes in the flux distributions in the dicarboxylic acid pathway.  相似文献   

15.
The utilization and conversion of glucose to volatile acids were monitored in anaerobic digestors by 13C-nuclear magnetic resonance. Glucose was converted to lactate and acetate. Lactate was subsequently converted to propionate. The distribution of the labeled carbons in propionate suggested that minor amounts were produced via the randomizing pathway and that the major portion of propionate was derived from lactate.  相似文献   

16.
Anaerobic degradation of long-chain fatty acids (LCFA) involves syntrophic bacteria and methanogens, but facultative anaerobic bacteria (FAB) might have a relevant role as well. Here we investigated oleate degradation by a syntrophic synthetic co-culture of Syntrophomonas zehnderi (Sz) and Methanobacterium formicicum (Mf) and FAB (two oleate-degrading Pseudomonas spp. I1 + I2). Sz + Mf were first cultivated in a continuous bioreactor under strict anaerobic conditions. Thereafter, I1 + I2 were inoculated and microaerophilic conditions were provided. Methane and acetate were the main degradation products by Sz + Mf in anaerobiosis and by Sz + Mf + I1 + I2 in microaerophilic conditions. However, acetate production from oleate was higher in microaerophilic conditions (5% O2) with the four microorganisms together (0.41 ± 0.07 mmol day−1) than in anaerobiosis with Sz + Mf (0.23 ± 0.05 mmol day−1). Oleate degradation in batch assays was faster by Sz + Mf + I1 + I2 (under microaerophilic conditions) than by Sz + Mf alone (under strict anaerobic conditions). I1 + I2 were able to grow with oleate and with intermediates of oleate degradation (hydrogen, acetate and formate). This work highlights the importance of FAB, particularly Pseudomonas sp., in anaerobic reactors treating oleate-based wastewater, because they accelerate oleate conversion to methane, by protecting strict anaerobes from oxygen toxicity and also by acting as alternative hydrogen/formate and acetate scavengers for LCFA-degrading anaerobes.  相似文献   

17.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

18.
More than 90% of the aspartate in a defined medium was metabolized after lactate exhaustion such that 3 mol of aspartate and 1 mol of propionate were converted to 3 mol of succinate, 3 mol of ammonia, 1 mol of acetate, and 1 mol of CO2. This pathway was also evident when propionate and aspartate were the substrates in complex medium in the absence of lactate. In complex medium with lactate present, about 70% of the aspartate was metabolized to succinate and ammonia during lactate fermentation, and as a consequence of aspartate metabolism, more lactate was fermented to acetate and CO2 than was fermented to propionate. The conversion of aspartate to fumarate and ammonia by the enzyme aspartase and subsequent reduction of fumarate to succinate occurred in the five strains of Propionibacterium freudenreichii subsp. shermanii studied. The ability to metabolize aspartate in the presence of lactate appeared to be related to aspartase activity. The specific activity of aspartase increased during and after lactate utilization, and the levels of this enzyme were lower in cells grown in defined medium than levels in those cells grown in complex medium. Under the conditions used, no other amino acids were readily metabolized in the presence of lactate. The possibility that aspartate metabolism by propionibacteria in Swiss cheese has an influence on CO2 production is discussed.  相似文献   

19.
Summary The characteristics of Bifidobacterium bifidum grown in solid state fermentation (SSF) system (water content of media 54.5 and 68.8%) was compared with the submerged fermentation (SmF) system (water content of medium: 89.8%). Besides lactic acid (lactate) and acetic acid (acetate), the bacterium was able to secrete propionic acid (propionate) and butyric acid (butyrate) under SSF conditions. However, it only produced lactate and acetate under SmF conditions. The ratio of lactate to acetate was 1.26–1.62:1 in SSF but it was 1:2 in SmF. A higher content of C16:0 and C18:1 as well as a lower content of C18:0 cell membrane fatty acids were observed in SSF than in SmF. There was a lower growth rate, a lower viable count and a longer logarithmic growth phase for B. bifidum cultivated in SSF than in SmF.  相似文献   

20.
The effects of sulfate on the anaerobic degradation of lactate, propionate, and acetate by a mixed bacterial culture from an anaerobic fermenter fed with wine distillery waste water were investigated. Without sulfate and with both sulfate and molybdate, lactate was rapidly consumed, and propionate and acetate were produced; whereas with sulfate alone, only acetate accumulated. Propionate oxidation was strongly accelerated by the presence of sulfate, but sulfate had no effect on acetate consumption even when methanogenesis was inhibited by chloroform. The methane production was not affected by the presence of sulfate. Counts of lactate- and propionate-oxidizing sulfate-reducing bacteria in the mixed culture gave 4.5×108 and 1.5×106 viable cells per ml, respectively. The number of lactate-oxidizing fermentative bacteria was 2.2×107 viable cells per ml, showing that sulfate-reducing bacteria outcompete fermentative bacteria for lactate in the ecosystem studied. The number of acetoclastic methanogens was 3.5×108 viable cells per ml, but only 2.5×104 sulfate reducers were counted on acetate, showing that acetotrophic methanogens completely predominated over acetate-oxidizing sulfate-reducing bacteria. The contribution of acetate as electron donor for sulfate reduction in the ecosystem studied was found to be minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号