首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
2.
  1. Commercially reared cavity-nesting bees have been studied mainly in large, intensively managed orchards. However, knowledge on wild cavity-nesting bee and wasp communities and their potential limitations in smaller orchards remain insufficient.
  2. We compared the colonization rate of trapnests, nesting success, parasitism and response to flower resources of cavity-nesting bees and wasps between apple orchards and nearby semi-natural habitats (SNHs).
  3. Trapnests were placed in orchards and neighbouring SNHs. Colonization dynamics were studied and herbaceous flower resources were estimated. Furthermore, nest and brood cell quantity, number of alive offspring and nest parasitism rate were assessed.
  4. We found a higher colonization rate in the SNHs than in the orchards. Both bees and wasps made more nests, completed more brood cells and had a higher number of alive offspring in the SNHs. The number of bee nests in the orchards showed a positive correlation with the species richness of the flowering plants. The nest parasitism of wasps was higher in the SNHs.
  5. Apple orchards in the studied small-scale system were generally less colonized by cavity-nesting hymenopterans than nearby SNHs that can be important reservoirs of these ecosystem service provider hymenopterans. Our results highlight the importance of diverse flowering herbaceous vegetation in the understory that increased the number of bee nests in orchards and that could have a positive effect on the nesting activity of the bee species active in summer. Therefore, management practices that support flowering plant species in the understory vegetation are highly recommended in such orchards.
  相似文献   

3.
  1. The infraorder Cicadomorpha is a diverse group comprising several species considered important pests of economic crops and species that may act as vectors of plant pathogens. In Europe, the gram-negative bacterium Xylella fastidiosa is one of the most important and severe insect-borne plant pathogens associated with the infraorder Cicadomorpha.
  2. Therefore, the knowledge of the abundance and diversity of native Cicadomorpha insect vectors related to the different agroecosystems is essential to design and implementing specific measures to control insect-borne plant pathogens.
  3. In this work, in two consecutive years (2018 and 2019), five almond orchards, five vineyards, five olive orchards, and five scrublands distributed in the North of Portugal were sampled in three different periods (early summer, summer and autumn) to investigate species composition, richness, and diversity of the Cicadomorpha community. Also, in 2019, five lemon orchards were sampled.
  4. A total of 6056 individuals were collected (2322 in 2018 and 3734 in 2019), belonging to 71 species of three families. Observing several considered pests or vectors of vicious pathogens within these species was possible. The confirmed vectors of X. fastidiosa (Philaenus spumarius (Linnaeus, 1758) and Neophilaenus campestris (Fallen, 1805)) were captured in all agroecosystems and, in general, with more abundance in autumn. The highest abundance, richness, and diversity of Cicadomorpha were observed in vineyards. However, these parameters (abundance, richness and diversity) significantly differed between the agroecosystem and sampling period.
  5. Further research on how the composition of the vegetation cover shapes the Cicadomorpha community is essential to implement strategies to reduce the spread of insect-borne pathogens if they are introduced into agroecosystems.
  相似文献   

4.
5.
  1. Korla fragrant pear (Pyrus sinkiangensis Yü) depends on cross-pollination by honeybees (Apis mellifera) but may suffer from low honeybee visitation.
  2. We assessed whether honeybee abundance and visitation frequency are enhanced by using synthetic Nasonov gland pheromone (NGP), which is naturally produced by worker bees to stimulate the aggregation of bees to food resources or nesting sites.
  3. The response of honeybees to synthetic NGP was firstly assessed using Y-tube olfactometer tests in the laboratory, and subsequently in the field, by placing NGP lures on Korla fragrant pear trees in orchards with and without beehives. Honeybee abundance was assessed using coloured pan traps while honeybee visits were assessed by visual observations on pear flowers.
  4. Y-tube olfactometer tests showed a significant preference of honeybees for NGP. In pear orchards with beehives, honeybee abundance was 2.5-fold higher on trees with NGP lures than on trees without NGP, and 2.2-fold higher in orchards in which all trees contained NGP lures than in orchards without NGP lures. Such positive effects were not observed in orchards without beehives.
  5. Flower visitation by honeybees was significantly higher in trees with NGP lures than without NGP lures, irrespective of the presence (5.7-fold higher) or absence of beehives (27.6-fold higher).
  6. In mixed pear-apricot orchards, honeybee abundance was higher in pear trees with NGP lures than without lures.
  7. Our results show that NGP lures attract honeybees to flowering pear trees in monoculture pear and mixed pear-apricot orchards, and that this effect is greatest in orchards with beehives.
  相似文献   

6.
So far, it is poorly understood how differential responses of avian seed dispersers and fruit predators to changes in habitat structure and fruit abundance along land-use gradients may translate into consequences for the seed dispersal of associated plants. We selected a gradient of habitat modification (forest, semi-natural, and rural habitat) characterized by decreasing tree cover and a high variation in local fruit availability. Along this gradient we quantified fruit removal by avian seed dispersers and fruit predators from 18 Sorbus aucuparia trees. We analyzed the relative importance of tree cover and fruit abundance in explaining species richness, abundance and fruit removal rates of both guilds from S. aucuparia trees. Species richness and abundance of seed dispersers decreased with decreasing tree cover, whereas fruit removal by seed dispersers decreased with decreasing fruit abundance independent of tree cover. Both variables had no effect on species richness, abundance and fruit removal by fruit predators. Consequently, seed dispersers dominated relative fruit removal in fruit-rich sites but the dispersal/predation ratio shifted in favor of predation in fruit-poor habitat patches. Our study demonstrates that variation in local habitat structure and fruit abundance can cause guild-specific responses. Such responses may result in a shift in fruit removal regimes and might affect the dispersal ability of dependent fruiting plants. Future studies should aim at possible consequences for plant recruitment and guild-specific responses of frugivores to disturbance gradients on the level of entire plant–frugivore associations.  相似文献   

7.
  1. The expansion of intensive agriculture has severely altered landscapes, a process that has been aggravated by the increase of greenhouse agriculture. However, few studies have considered the combined effects of habitat loss/degradation and greenhouse farming on insect visitors to native plants.
  2. We analysed how habitat loss/degradation and greenhouse farming are related to the composition, abundance, and richness of the insect assemblages visiting flowers in a semiarid keystone shrub (Ziziphus lotus) in southeast Spain, home to Europe's largest area of greenhouses. We studied 21 populations distributed across a gradient of greenhouse intensification and habitat loss.
  3. The composition, abundance, and richness of the Ziziphus insect assemblage substantially varied between populations and were differently affected by natural habitat-remnant and landscape degradation and population isolation.
  4. Insect abundance was negatively affected by habitat loss at population level but positively affected at individual Ziziphus scale. Honey-bee relative abundance increased in highly degraded landscapes and isolated populations, being positively associated with hoverflies and negatively with ants and bee-flies. Wild bees, carrion flies, and wasps remain neutral along the degradation axes. Insect visitor abundance per plant affected positively the flower visitation rate, which was also favoured by the relative abundance of honey bees, wild bees, and hoverflies. Species richness was not influenced by anthropogenic degradation, and did not affect flower visitation rate.
  5. Our results highlight the fragility of wild pollinator communities to landscape and habitat degradation, and the need to regulate intensive farming practices to preserve wild insect pollinator assemblages in semiarid habitats.
  相似文献   

8.
9.
  1. In peri-urban areas, many farmers are transitioning from conventional agriculture to agroecological practices to reduce pesticide input and preserving ecosystem services such as natural pest control. Field margins represent a stable habitat for arthropods, but community structure depends on many factors, including management type and vegetation features.
  2. We studied the effects of agroecological transitions and vegetation features on arthropods of horticultural field margins, focusing on three feeding guilds (herbivores, predators and parasitoids). We sampled arthropods using the beat-sheet method in five conventional fields and five under agroecological transition. We also measured vegetation height, richness, flower abundance and plant cover.
  3. Our results showed that arthropod diversity was higher in agroecological fields whereas herbivore abundance was lower, with a consistent pattern across most taxonomic orders. Vegetation features displayed multiple effects among functional and taxonomic groups. Herbivores did not respond to most vegetation variables whereas predators correlated with several, with similar trends among orders.
  4. We conclude that agroecological transitions and field margins with high vegetation richness and floral resources influence arthropod communities with potential benefits regarding pest regulation. These practices might be more effective if considered alongside other methods that enhance biodiversity and if they are consistent at a landscape scale.
  相似文献   

10.
  1. Seasonal changes in environments may not only affect habitat connectivity but may also affect its use by species and their interactions. Thus, during the flood season, ants are forced to develop survival strategies such as vertical plant migration.
  2. According to this, it has been hypothesized that the presence of ants may directly affect plant-pollinator interactions.
  3. Thus, we asked the following questions: (i) Are floral visitors of Hyptis brevipes expelled due to ant presence on inflorescences during the flood period? (ii) Is the ant effect mediated by the abundance of ants foraging on inflorescences? And, (iii) Does flower abundance predict the abundance of floral visits and ants?
  4. We experimentally sampled 59 H. brevipes plants with and without ants during the flooded season, and observed no differences in flower abundance between ant treatments.
  5. The probability of detaining floral visitors on H. brevipes increased with ant abundance and exceeded 50% possible repellency, but the probability of visitor deterrence was not related to flower abundance. Furthermore, the abundance of flowers did not predict the number of ants on H. brevipes individuals or the frequency of floral visits.
  6. Consequently, ant repelling effects are pronounced when there are more ants foraging on plants. However, the ant repelling effect can be mitigated when plants flourish all year-round and exhibit higher concentrations of flowers in the dry months. Additionally, the different sexual functions of plants may present specific responses due to the explosive pollination mechanism associated with ant effects.
  相似文献   

11.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   

12.
  1. Flower strips can promote and conserve beneficial insects in agroecosystems. Knowing which groups are favoured and which plant traits affect visitation rates by beneficial insects is important for the design of plant strips.
  2. We established 21 Native Flower Strips (NFS) in avocado orchards in Central Chile. NFS contained 7–11 plant species, with variable corolla length and flowering period, to promote beneficial insects. We assessed flight activity of ladybirds (Coccinellidae) and bees (Apiformes) in sites adjacent to and far from NFS within avocado orchards. Additionally, we evaluated flower visitation for the main flower visitor groups (Apiformes, Lepidoptera, Diptera, and Coleoptera) to the plant species in NFS according to season and corolla length.
  3. We found almost six times greater flight activity of coccinellids and bees in NFS than sites far from NFS within avocado orchards. Visitation rates of pollinator groups varied according to corolla length and season. Diptera, Coleoptera, and Lepidoptera consistently visited short corolla flowers. NFS were highly visited in summer and autumn, when avocados were not in bloom.
  4. NFS in orchards should be encouraged by policymakers because they support beneficial insects that could deliver ecosystem services and contribute to local biological conservation.
  相似文献   

13.
14.
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.  相似文献   

15.
16.
  • Several monoecious species of palms have developed complex strategies to promote cross‐pollination, including the production of large quantities of floral resources and the emission of scents that are attractive to pollinators. Syagrus coronata constitutes an interesting model with which to understand the evolution of plant reproductive strategies in a monoecious species adapted to seasonally dry forests.
  • We monitored blooming phenology over 1 year, during which we also collected and identified floral visitors and putative pollinators. We identified potential floral visitor attractants by characterizing the scent composition of inflorescences as well as of peduncular bracts, during both male and female phases, and the potential for floral thermogenesis.
  • Syagrus coronata produces floral resources throughout the year. Its inflorescences are predominantly visited by a diverse assortment of small‐sized beetles, whose richness and abundance vary throughout the different phases of anthesis. We did not find evidence of floral thermogenesis. A total of 23 volatile compounds were identified in the scent emitted by the inflorescences, which did not differ between male and female phases; whereas the scent of the peduncular bracts was composed of only 4‐methyl guaiacol, which was absent in inflorescences.
  • The composition of floral scent chemistry indicates that this palm has evolved strategies to be predominantly pollinated by small‐sized weevils. Our study provides rare evidence of a non‐floral scent emitting structure involved in pollinator attraction, only the second such case specifically in palms. The peculiarities of the reproductive strategy of S. coronata might play an important role in the maintenance of pollination services and pollen dispersion.
  相似文献   

17.
Reliable estimates of host specificity in tropical rainforest beetles are central for an understanding of food web dynamics and biodiversity patterns. However, it is widely assumed that herbivores constitute the majority of host specific species, and that most herbivore species feed on leaves. We tested the generality of this assumption by comparing both plant host‐ and microhabitat‐specificity between beetle communities inhabiting the foliage (flush and mature), flowers, fruit, and suspended dead wood from 23 canopy plant species in a tropical rainforest in north Queensland, Australia. Independent of host tree identity, 76/77 of the most abundant beetle species (N ≥ 12 individuals) were aggregated on a particular microhabitat. Microhabitat specialization (measured by Sm and Lloyd's indices) was very high and did not differ between flower and foliage communities, suggesting that each newly‐sampled microhabitat has a large additive effect on total species richness. In accordance with previous studies, host specificity of foliage‐inhabiting beetles was most pronounced among herbivorous families (Curculionidae, Chrysomelidae). By contrast, host specificity among flower‐visitors was equally high among herbivorous and nonherbivorous families (e.g. Nitidulidae, Staphylinidae, Cleridae). Effective specialization (FT) measures showed that traditional correction factors used to project total species richness in nonherbivorous groups fail to fully capture diversity in the flower‐visiting beetle fauna. These results demonstrate that host specialization is not concentrated within folivores as previously assumed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 215–228.  相似文献   

18.
Flowers on the ground of orchards can provide substantial resources for wild pollinators of orchard trees. Few studies, however, have examined the relative importance of groundcover flowers to orchard pollination by analyzing pollen on the body surface of pollinators. Oriental persimmon trees bloom within the longer blooming period of white clover, which is occasionally found as a flowering plant on the ground of persimmon orchards in Japan. The present study compared the insect species assemblage collected on persimmon flowers with that on clover. Before persimmon bloomed, Bombus ardens ardens and Apis cerana japonica were the major visitors of clover flowers. Once persimmon bloomed, the former was the most abundant bee that visited persimmon flowers over the flowering period. Apis mellifera was captured only on clover flowers. We found numerous clover pollen grains on the body surface of bumblebees captured on persimmon flowers, but far fewer persimmon pollen grains on bees that visited clover. These findings show that B. ardens ardens utilized the clover flowers under the orchards before persimmon bloomed.  相似文献   

19.
Plant-frugivore networks play a key role in the regeneration of sub-tropical forest ecosystems. However, information about the impact of habitat characteristics on plant-frugivore networks in fragmented forests is scarce. We investigated the importance of fruit abundance, fruiting plant species richness and canopy cover within habitat fragments for the structure and robustness of plant-frugivore networks in a mosaic forest landscape of South Africa. In total, 53 avian species were involved in fruit removal of 31 fleshy-fruiting plant species. Species specialisation was always higher for plants than for frugivores. Both species and network-level specialisation increased with increasing fruit abundance and decreased with increasing fruiting plant species richness and canopy cover within fragments. Interaction diversity was unaffected by fruit abundance and canopy cover, but increased slightly with increasing fruiting plant species richness. These findings suggest that especially the availability of resources is an important determinant of the structure of plant-frugivore networks in a fragmented forest landscape.  相似文献   

20.
  1. Blueberry is one of the most relevant buzz-pollinated crops worldwide and Chile is the most important global producer of fresh blueberries during wintertime in the Northern Hemisphere. Thousands of exotic Bombus terrestris are imported from Europe to pollinate blueberries. However, no study has investigated the performance of the native Chilean fauna to pollinate blueberry or other crops. Therefore, we aimed to compare the performance of native Chilean floral visitors with managed visitors to pollinate highbush blueberry.
  2. Per-visit pollination performance (stigmatic pollen deposition) and floral visitation were measured and the presence of sonication behaviour of flower visitors was evaluated for five cultivars in two blueberry orchards located in southern Chile.
  3. Floral visitors showed a preference for one or more blueberry cultivars, instead of visiting all cultivars equally. Floral visits with sonication deposited more conspecific pollen on stigmas than visits without sonication. Some native sonicating bees (Cadeguala and Bombus), especially Cadeguala occidentalis, were efficient pollen vectors of blueberry and better pollinators than honeybees (5.8 times more pollen transferred) similar to that of the managed bee B. terrestris.
  4. The results indicate that some Chilean native bee species, especially those with sonication behaviour, can provide pollination service to highbush blueberry crops.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号