首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The study of a few genes has permitted the identification of three elements that constitute a yeast polyadenylation signal: the efficiency element (EE), the positioning element and the actual site for cleavage and polyadenylation. In this paper we perform an analysis of oligonucleotide composition on the sequences located downstream of the stop codon of all yeast genes. Several oligonucleotide families appear over-represented with a high significance (referred to herein as ‘words’). The family with the highest over-representation includes the oligonucleotides shown experimentally to play a role as EEs. The word with the highest score is TATATA, followed, among others, by a series of single-nucleotide variants (TATGTA, TACATA, TAAATA . . .) and one-letter shifts (ATATAT). A position analysis reveals that those words have a high preference to be in 3′ flanks of yeast genes and there they have a very uneven distribution, with a marked peak around 35 bp after the stop codon. Of the predicted ORFs, 85% show one or more of those sequences. Similar results were obtained using a data set of EST sequences. Other clusters of over-represented words are also detected, namely T- and A-rich signals. Using these results and previously known data we propose a general model for the 3′ trailers of yeast mRNAs.  相似文献   

5.
6.
7.
8.
9.

Background  

Psoriasis is complex inflammatory skin pathology of autoimmune origin. Several cell types are perturbed in this pathology, and underlying signaling events are complex and still poorly understood.  相似文献   

10.
11.
12.

Background

DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions.

Methods

We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases.

Results

Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.

Conclusion

These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.  相似文献   

13.

Background

In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics.

Results

Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion.

Conclusion

The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1190-9) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
Cobalt is an essential micronutrient but is toxic when present in excess. To study cobalt homeostasis we performed a genome-wide screen for deletion strains that show sensitivity or resistance to CoCl(2). Among 54 cobalt-sensitive strains, 18 are supersensitive strains, which are involved in histidine biosynthetic process, ubiquitination, mitochondria function, membrane trafficking, transporter and a variety of other known functions or still unknown functions. Furthermore, we identified 56 cobalt-resistant deletion strains, which are mainly involved in mitochondria function, signal transduction, ubiquitination, and gene expression and chromatin remodeling. Notably, deletion of the zhf1 (+) gene, encoding a zinc ion transporter, confers supersensitivity to cobalt and overexpression of the zhf1 (+) gene confers marked tolerance to cobalt, indicating that Zhf1 play key roles in cobalt detoxification. Interestingly, all the histidine-auxotrophic mutants displayed cobalt sensitivity and deletion of cationic amino acid transporter Cat1, which was shown to be involved in histidine uptake, suppressed the CoCl(2)-sensitive growth defect of the his2 mutants, suggesting that CoCl(2) may be transported into the cell together with histidine via histidine transporters including Cat1. In addition, we obtained results suggesting that the E2 ubiquitin conjugating enzyme Rhp6 and Sty1 stress MAP kinase pathway are involved in the regulation of cobalt homeostasis. Altogether, our genome-wide study demonstrates for the first time the mechanisms of cobalt homeostasis, particularly its uptake and detoxification in fission yeast.  相似文献   

17.
18.
19.
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号