首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythritol is produced in yeasts via the reduction of erythrose into erythritol by erythrose reductases (ERs). However, the genes codifying for the ERs involved in this reaction have not been described in any Saccharomyces species yet. In our laboratory, we recently showed that, during alcoholic fermentation, erythritol is differentially produced by Saccharomyces cerevisiae and S. uvarum species, the latter being the largest producer. In this study, by using BLAST analysis and phylogenetic approaches the genes GRE3, GCY1, YPR1, ARA1 and YJR096W were identified as putative ERs in Saccharomyces cerevisiae Then, these genes were knocked out in our S. uvarum strain (BMV58) with higher erythritol biosynthesis compared to control S. cerevisiae wine strain, to evaluate their impact on erythritol synthesis and global metabolism. Among the mutants, the single deletion of GRE3 markedly impacts erythritol production, although ΔYPR1ΔGCY1ΔGRE3 was the combination that most decreased erythritol synthesis. Consistent with the increased production of fermentative by-products involved in redox balance in the Saccharomyces uvarum strain BMV58, erythritol synthesis increases at higher sugar concentrations, hinting it might be a response to osmotic stress. However, the expression of GRE3 in the S. uvarum strain was found to peak just before the start of the stationary phase, being consistent with the observation that erythritol increases at the start of the stationary phase, when there is low sugar in the medium and nitrogen sources are depleted. This suggests that GRE3 plays its primary function to help the yeast cells to maintain the redox balance during the last phases of fermentation.  相似文献   

2.
3.
4.
The crystal structure of the GCY1 gene product from Saccharomyces cerevisiae has been determined to 2.5 Å and is being refined. The model includes two protein molecules, one apo and one holo, per asymmetric unit. Examination of the model reveals that the active site surface is somewhat flat when compared with the other aldo-keto reductase structures, possibly accommodating larger substrates. The Km for NADPH (28.5 μM) is higher than that seen for other family members. This can be explained structurally by the lack of the ‘safety belt’ of residues seen in other aldo-keto reductases with higher affinity for NADPH. Catalysis also differs from the other aldo-keto reductases. The tyrosine that acts as an acid in the reduction reaction is flipped out of the catalytic pocket. This implies that the protein must either undergo a conformational change before catalysis can take place or that there is an alternate acid moiety.  相似文献   

5.
In the vacuolar basic amino acid (VBA) transporter family of Saccharomyces cerevisiae, VBA4 encodes a vacuolar membrane protein with 14 putative transmembrane helices. Transport experiments with isolated vacuolar membrane vesicles and estimation of the amino acid contents in vacuoles showed that Vba4p is not likely involved in the transport of amino acids. We found that the vba4Δ cells, as well as vba1Δ and vba2Δ cells, showed increased susceptibility to several drugs, particularly to azoles. Although disruption of the VBA4 gene did not affect the salt tolerance of the cells, vacuolar fragmentation observed under high salt conditions was less prominent in vba4Δ cells than in wild type, vba1Δ, and vba2Δ cells. Vba4p differs from Vba1p and Vba2p as a vacuolar transporter but is important for the drug resistance and vacuolar morphology of S. cerevisiae.  相似文献   

6.
We characterized a sucrose-tolerant mutant of Saccharomyces cerevisiae, S22, that produces about four times as much acetate as the wild-type strain K9. We monitored the concentration of extracellular acetate during cultivation, and compared the gene expression ratios of S22 with those of K9 using DNA microarray. We propose that the sucrose tolerance of S22 may be related to the overexpression of the ENA1, ENA2, and ENA5 genes and some cell wall mannoprotein genes, and that the high acetate productivity of S22 is related to the overexpression of the ALD4 gene and oxidative phosphorylation genes.  相似文献   

7.
In the budding yeast Saccharomyces cerevisiae, progress of the cell cycle beyond the major control point in G1 phase, termed START, requires activation of the evolutionarily conserved Cdc28 protein kinase by direct association with GI cyclins. We have used a conditional lethal mutation in CDC28 of S. cerevisiae to clone a functional homologue from the human fungal pathogen Candida albicans. The protein sequence, deduced from the nucleotide sequence, is 79% identical to that of S. cerevisiae Cdc28 and as such is the most closely related protein yet identified. We have also isolated from C. albicans two genes encoding putative G1 cyclins, by their ability to rescue a conditional GI cyclin defect in S. cerevisiae; one of these genes encodes a protein of 697 amino acids and is identical to the product of the previously described CCN1 gene. The second gene codes for a protein of 465 residues, which has significant homology to S. cerevisiae Cln3. These data suggest that the events and regulatory mechanisms operating at START are highly conserved between these two organisms.  相似文献   

8.
9.
10.
Engineering yeast to be more tolerant to fermentation inhibitors, furfural and 5-hydroxymethylfurfural (HMF), will lead to more efficient lignocellulose to ethanol bioconversion. To identify target genes involved in furfural tolerance, a Saccharomyces cerevisiae gene disruption library was screened for mutants with growth deficiencies in the presence of furfural. It was hypothesized that overexpression of these genes would provide a growth benefit in the presence of furfural. Sixty two mutants were identified whose corresponding genes function in a wide spectrum of physiological pathways, suggesting that furfural tolerance is a complex process. We focused on four mutants, zwf1, gnd1, rpe1, and tkl1, which represent genes encoding pentose phosphate pathway (PPP) enzymes. At various concentrations of furfural and HMF, a clear association with higher sensitivity to these inhibitors was demonstrated in these mutants. PPP mutants were inefficient at reducing furfural to the less toxic furfuryl alcohol, which we propose is a result of an overall decreased abundance of reducing equivalents or to NADPH's role in stress tolerance. Overexpression of ZWF1 in S. cerevisiae allowed growth at furfural concentrations that are normally toxic. These results demonstrate a strong relationship between PPP genes and furfural tolerance and provide additional putative target genes involved in furfural tolerance.Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.  相似文献   

11.
12.
We have characterized a second nuclear gene (tufM) in Arabidopsis thaliana that encodes a eubacterial-like protein synthesis elongation factor Tu (EF-Tu). This gene does not closely resemble the previously described Arabidopsis nuclear tufA gene, which encodes the plastid EF-Tu, and does not contain sequence elements found in all cyanobacterial and plastid tufA genes. However, the predicted amino acid sequence includes an N-terminal extension which resembles an organellar targeting sequence and shares three unique sequence elements with mitochondrial EF-Tu's, from Saccharomyces cerevisiae and Homo sapiens, suggesting that this gene encodes the Arabidopsis mitochondrial EF-Tu. Consistent with this interpretation, the gene is expressed at a higher level in flowers than in leaves. Phylogenetic analysis confirms the mitochondrial character of the sequence and indicates that the human, yeast, and Arabidopsis tufM genes have undergone considerably more sequence divergence than their cytoplasmic counterparts, perhaps reflecting a cross-compartmental acceleration of gene evolution for components of the mitochondrial translation apparatus. As previously observed for tufA, the tufM gene is present in one copy in Arabidopsis but in several copies in other species of crucifers.  相似文献   

13.
Transcription Factor Genes from Rat Pneumocystis carinii   总被引:2,自引:0,他引:2  
Genes encoding the TFIID TATA-box binding protein (TBP) from two probable species of rat Pneumocystis carinii (prototype and variant) were sequenced. The two P. carinii TBP gene sequences were 91% identical to each other, and 65-77% identical to TBP genes from other species. A cDNA from one of the two P. carinii TBP genes was sequenced, which showed that four small introns resided in identical positions within the TBP genes from the prototype and variant rat P. carinii. Conservation of the 180 amino acids that constitute the conserved core of TBP was 97% between the P. carinii TBP, which were 95% and 97% identical to conserved core sequences of TBP from Saccharomyces cerevisiae and Schizosaccharomyces pombe respectively.  相似文献   

14.
To enhance the ethanol tolerance of Saccharomyces cerevisiae, the Arabidopsis thaliana FAD2 gene and/or the S. cerevisiae OLE1 gene were over-expressed in this yeast. The transformant over-expressing both these genes could not only synthesize dienoic fatty acids but also increased the unsaturated fatty acid content of membrane lipid and then showed the highest viability in the presence of 15% (v/v) ethanol.  相似文献   

15.
Peroxisome assembly in mammals requires more than 14 genes. So far, we have isolated seven complementation groups (CGs) of peroxisome biogenesis-defective Chinese hamster ovary (CHO) cell mutants, Z65, Z24/ZP107, ZP92, ZP105/ZP139, ZP109, ZP110, ZP114. Two peroxin cDNAs, PEX2 and PEX6, were first cloned by genetic phenotype-complementation assay using Z65 and ZP92, respectively, and were shown to be responsible for peroxisome biogenesis disorders (PBD) such as Zellweger syndrome, of CG-F (the same as CG-X in U.S.A.) and CG-C (the same as CG-IV), respectively. Pex2p is a RING zinc finger membrane protein of peroxisomes and Pex6p is a member of the AAA ATPase family. We likewise isolated PEX12 encoding a peroxisomal integral membrane protein in the RING family, by functional complementation of ZP109, demonstrating PEX12 to be responsible for CG-III PBD. We also cloned PEX1 by screening of human liver cDNA library, using ZP107. PEX1 mutation was delineated to be the genetic cause of PBD in the most highest incidence group, CG-E (the same a CG-I). Moreover, we recently found that Pex5p, using PEX5-defective ZP105 and ZP139. Thus, CHO cell mutants defective in peroxisome biogenesis are indeed shown to be very useful for the studies of peroxisome assembly and delineating pathogenic genes in PBD. Furthermore, we have isolated novel CGs of CHO mutants, ZP119 and ZP126.  相似文献   

16.
In Penicillium chrysogenum, key enzymes involved in the production of penicillin reside in peroxisomes. As a first step to understand the role of these organelles in penicillin biosynthesis, we set out to isolate the genes involved in peroxisome biogenesis. Here we report the cloning and characterization of P. chrysogenum PEX1 and PEX6, which encode proteins of the AAA family of ATPases. The second AAA module, which is essential for the function of Pex1p and Pex6p in peroxisome biogenesis, is highly conserved in both PcPex1p and PcPex6p. PcPEX1 and PcPEX6 contain three and two introns, respectively. Received: 15 February 2000 / Accepted: 18 February 2000  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号