首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Ning D  Ye S  Liu B  Chang J 《Current microbiology》2011,63(5):496-502
The proteolytic regulation of toxin–antitoxin (TA) systems has been well studied in Escherichia coli but remains unclear in other bacteria. A chromosomal gene pair ssr1114/slr0664, named relNEs, of Synechocystis sp. PCC 6803 forms a TA system belonging to rel family. Here, we used E. coli strain BL21 (DE3) as a host to characterize the proteolytic regulation of relNEs. The proteases of this strain could not degrade the antitoxin RelN, and the ectopic production of the ATP-dependant protease Lons or ClpP2s/Xs of Synechocystis sp. PCC6803 did not affect E. coli growth. Either Lons or ClpP2s/Xs was able to degrade RelN resulting in growth arrest of E. coli due to the activation of RelEs’s toxicity, and the presence of RelEs could protect RelN to a certain extent against Lons and ClpP2s/Xs. Our observations suggest that both Lons and ClpP2s/Xs are responsible for RelN proteolysis in the native host under certain conditions. RelN is the first protein substrate identified for cyanobacterial ATP-dependent proteases.  相似文献   

2.
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.  相似文献   

3.
During cultivation under storage conditions with BG11 medium containing acetate as a carbon source, Synechocystis sp. PCC6803 accumulated poly(3-hydroxybutyrate) up to 10% (w/w) of the cell dry weight. Our analysis of the complete Synechocystis sp. PCC6803 genome sequence, which had recently become available, revealed that not only the open reading frame slr1830 (which was designated as phaC) but also the open reading frame slr1829, which is located colinear and upstream of phaC, most probably represent a polyhydroxyalkanoic acid (PHA) synthase gene. The open reading frame slr1829 was therefore designated as phaE. The phaE and phaC gene products exhibited striking sequence similarities to the corresponding PHA synthase subunits PhaE and PhaC of Thiocystis violacea, Chromatium vinosum, and Thiocapsa pfennigii. The Synechocystis sp. PCC6803 genes were cloned using PCR and were heterologously expressed in Escherichia coli and in Alcaligenes eutrophus. Only coexpression of phaE and phaC partially restored the ability to accumulate poly(3-hydroxybutyrate) in the PHA-negative mutant A. eutrophus PHB4. These results confirmed our hypothesis that coexpression of the two genes is necessary for the synthesis of a functionally active Synechocystis sp. PCC6803 PHA synthase. PHA granules were detected by electron microscopy in these cells, and the PHA-granule-associated proteins were studied. Western blot analysis of Synechocystis sp. PCC6803 crude cellular extracts and of granule-associated proteins employing antibodies raised against the PHA synthases of A. eutrophus (PhaC) and of C. vinosum (PhaE and PhaC) revealed no immunoreaction. Received: 11 March 1998 / Accepted: 2 June 1998  相似文献   

4.
To study the function of soluble NAD(P)H:quinone oxidoreductase of the cyanobacterium Synechocystis sp. PCC 6803 encoded by drgA gene, recombinant DrgA protein carrying 12 histidine residues on the C-terminal end was expressed in Escherichia coli and purified. Recombinant DrgA is a flavoprotein that exhibits quinone reductase and nitroreductase activities with NAD(P)H as the electron donor. Using EPR spectroscopy, it was demonstrated that addition of recombinant DrgA protein and NADPH to DCMU-treated isolated thylakoid membranes of the cyanobacterium increased the dark rereduction rate of the photosystem I reaction center (P700+). Thus, DrgA can participate in electron transfer from NADPH to the electron transport chain of the Synechocystis sp. PCC 6803 thylakoid membrane.  相似文献   

5.
His-tagged Synechocystis sp. PCC 6803 PotD protein (rPotD) involved in polyamine transport was overexpressed in Escherichia coli. The purified rPotD showed saturable binding kinetics with radioactively labeled polyamines. The rPotD exhibited a similar binding characteristic for three polyamines, with putrescine having less preference. The K d values for putrescine, spermine, and spermidine were 13.2, 8.3, and 7.8 μM, respectively. Binding of rPotD with polyamines was maximal at pH 8.0. Docking of these polyamines into the homology model of Synechocystis PotD showed that all three polyamines are able to interact with Synechocystis PotD. The binding modes of the docked putrescine and spermidine in Synechocystis are similar to those of PotF and PotD in E. coli, respectively. Competition experiments showed specific binding of rPotD with polyamines. The presence of putrescine and spermidine in the growth medium could induce an increase in PotD contents, suggesting the role of PotD in mediating the transport of polyamine in Synechocystis sp. PCC 6803.  相似文献   

6.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   

7.
Synechocystis sp. PCC 6803 PG is a cyanobacterial strain capable of synthesizing 1,2-propanediol from carbon dioxide (CO2) via a heterologous three-step pathway and a methylglyoxal synthase (MGS) originating from Escherichia coli as an initial enzyme. The production window is restricted to the late growth and stationary phase and is apparently coupled to glycogen turnover. To understand the underlying principle of the carbon partitioning between the Calvin-Benson-Bassham (CBB) cycle and glycogen in the context of 1,2-propanediol production, experiments utilizing 13C labeled CO2 have been conducted. Carbon fluxes and partitioning between biomass, storage compounds, and product have been monitored under permanent illumination as well as under dark conditions. About one-quarter of the carbon incorporated into 1,2-propanediol originated from glycogen, while the rest was derived from CO2 fixed in the CBB cycle during product formation. Furthermore, 1,2-propanediol synthesis was depending on the availability of photosynthetic active radiation and glycogen catabolism. We postulate that the regulation of the MGS from E. coli conflicts with the heterologous reactions leading to 1,2-propanediol in Synechocystis sp. PCC 6803 PG. Additionally, homology comparison of the genomic sequence to genes encoding for the methylglyoxal bypass in E. coli suggested the existence of such a pathway also in Synechocystis sp. PCC 6803. These findings are critical for all heterologous pathways coupled to the CBB cycle intermediate dihydroxyacetone phosphate via a MGS and reveal possible engineering targets for rational strain optimization.  相似文献   

8.
Although type IV pilus has been implicated in the phototactic motility of some unicellular cyanobacteria, its regulatory mechanism and the effect of environmental factors on motility are still unknown. Equally important is the ability of cyanobacterial cells to anchor themselves to an environment that is conducive for survival. We compared the motility of a newly isolated unicellular brackish cyanobacterium, Synechocystis sp. UNIWG, with the morphologically and phylogenetically similar freshwater cyanobacterium Synechocystis sp. PCC6803 under different environmental conditions. The phototactic motility of Synechocystis sp. UNIWG on semisolid BG‐11 medium with various concentrations of nitrogen source was significantly faster than that of Synechocystis PCC6803. Interestingly, the cell surface of Synechocystis sp. UNIWG showed the presence of rigid spicules when grown in liquid BG‐11, a phenomenon that was absent in Synechocystis PCC6803. Negative staining of Synechocystis sp. UNIWG revealed the presence of two distinct pilus morphotypes, which resembled type IV pili and thin pili of Synechocystis PCC6803. This finding suggested a similar pattern of phototactic motility in both strains. However, the rigid spicules on Synechocystis sp. UNIWG seem to be more of a hindrance during type IV motility. It was determined that the spicules were degraded when the cells moved, such as under prolonged darkness and/or depletion of nitrogen source, indicating that the function of the spicules is to attach the cell to an environment that is conducive for its survival. Thus, Synechocystis sp. UNIWG shows phototaxis regulation that is more complex than Synechocystis PCC6803.  相似文献   

9.
The gene products of sll0337 and slr0081 in Synechocystis sp. PCC 6803 have been identified as the homologues of the Escherichia coli phosphate-sensing histidine kinase PhoR and response regulator PhoB, respectively. Interruption of sll0337, the gene encoding the histidine protein kinase, by a spectinomycin-resistance cassette blocked the induction of alkaline phosphatase activity under phosphate-limiting conditions. A similar result was obtained when slr0081, the gene encoding the response regulator, was interrupted with a cassette conferring resistance to kanamycin. In addition, the phosphate-specific transport system was not up-regulated in our mutants when phosphate was limiting. Unlike other genes for bacterial phosphate-sensing two-component systems, sll0337 and slr0081 are not present in the same operon. Although there are three assignments for putative alkaline phosphatase genes in the Synechocystis sp. PCC 6803 genome, only sll0654 expression was detected by northern analysis under phosphate limitation. This gene codes for a 149 kDa protein that is homologous to the cyanobacterial alkaline phosphatase reported in Synechococcus sp. PCC 7942 [Ray, J.M., Bhaya, D., Block, M.A. and Grossman, A.R. (1991) J. Bact. 173: 4297–4309]. An alignment identified a conserved 177 amino acid domain that was found at the N-terminus of the protein encoded by sll0654 but at the C-terminus of the protein in Synechococcus sp. PCC 7942.  相似文献   

10.
11.

Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production due to its ability to directly convert atmospheric carbon dioxide into ethanol using photosystems. To enhance ethanol production in Synechocystis sp. PCC 6803, metabolic engineering was performed based on in silico simulations, using the genome-scale metabolic model. Comprehensive reaction knockout simulations by flux balance analysis predicted that the knockout of NAD(P)H dehydrogenase enhanced ethanol production under photoautotrophic conditions, where ammonium is the nitrogen source. This deletion inhibits the re-oxidation of NAD(P)H, which is generated by ferredoxin-NADP+ reductase and imposes re-oxidation in the ethanol synthesis pathway. The effect of deleting the ndhF1 gene, which encodes NADH dehydrogenase subunit 5, on ethanol production was experimentally evaluated using ethanol-producing strains of Synechocystis sp. PCC 6803. The ethanol titer of the ethanol-producing ∆ndhF1 strain increased by 145%, compared with that of the control strain.

  相似文献   

12.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

13.
A 5.5-kb HindIII fragment of Synechocystis PCC6803 containing a liverwort (ORF316) homolog encoding a putative zinc finger protein was cloned. Nucleotide sequence analysis showed that the homology of the amino acid sequence deduced from the ORF326 of Synechocystis PCC6803 with the counterparts of a liverwort and tobacco was 50% and 46%, respectively. Synechocystis ORF326 also showed 38% homology with the dedB gene in Escherichia coli. The gene organization of the region in these species of organisms was quite different. This suggests that the Synechocystis ORF326 and liverwort ORF316 genes may be related to a common regulatory gene, but not photosynthetic gene characteristic to chloroplasts.  相似文献   

14.
The genome of cyanobacterium Synechocystis sp. PCC 6803 contains the sll0136 (pepP) gene encoding the putative homolog of proline aminopeptidase PII (AMPPII) of the heterotrophic bacterium Escherichia coli. AMPPII is known to cleave the N-terminal amino acid residue of peptides and proteins only in the case of a penultimate proline position. The Synechocystis sp. PCC 6803 insertion mutant with inactivated pepP gene is characterized by the reduced content of phycobiliproteins and also proteins of photosystem II, which may be related to the reduced synthesis or stability of corresponding proteins. A possible involvement of PepP in biogenesis of proteins of the photosynthetic apparatus is discussed.  相似文献   

15.

Background  

Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform - an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network.  相似文献   

16.

Background  

Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g).  相似文献   

17.
When cyanobacteria acclimate to nitrogen deficiency, they degrade their large (3–5-MDa), light-harvesting complexes, the phycobilisomes. This massive, yet specific, intracellular degradation of the pigmented phycobiliproteins causes a color change of cyanobacterial cultures from blue-green to yellow-green, a process referred to as chlorosis or bleaching. Phycobilisome degradation is induced by expression of the nblA gene, which encodes a protein of ∼7 kDa. NblA most likely acts as an adaptor protein that guides a Clp protease to the phycobiliproteins, thereby initiating the degradation process. Most cyanobacteria and red algae possess just one nblA-homologous gene. As an exception, the widely used “model organism” Synechocystis sp. PCC6803 expresses two such genes, nblA16803 and nblA26803, both of whose products are required for phycobilisome degradation. Here, we demonstrate that the two NblA proteins heterodimerize in vitro and in vivo using pull-down assays and a Förster energy-transfer approach, respectively. We further show that the NblA proteins form a ternary complex with ClpC (the HSP100 chaperone partner of Clp proteases) and phycobiliproteins in vitro. This complex is susceptible to ATP-dependent degradation by a Clp protease, a finding that supports a proposed mechanism of the degradation process. Expression of the single nblA gene encoded by the genome of the N2-fixing, filamentous cyanobacterium Nostoc sp. PCC7120 in the nblA1/nblA2 mutant of Synechocystis sp. PCC6803 induced phycobilisome degradation, suggesting that the function of the NblA heterodimer of Synechocystis sp. PCC6803 is combined in the homodimeric protein of Nostoc sp. PCC7120.  相似文献   

18.
In terms of generating sustainable energy resources, the prospect of producing energy and other useful materials using cyanobacteria has been attracting increasing attention since these processes require only carbon dioxide and solar energy. To establish production processes with a high productivity, in silico models to predict the metabolic activity of cyanobacteria are highly desired. In this study, we reconstructed a genome-scale metabolic model of the cyanobacterium Synechocystis sp. PCC6803, which included 465 metabolites and 493 metabolic reactions. Using this model, we performed constraint-based metabolic simulations to obtain metabolic flux profiles under various environmental conditions. We evaluated the simulated results by comparing these with experimental results from 13C-tracer metabolic flux analyses, which were obtained under heterotrophic and mixotrophic conditions. There was a good agreement of simulation and experimental results under both conditions. Furthermore, using our model, we evaluated the production of ethanol by Synechocystis sp. PCC6803, which enabled us to estimate quantitatively how its productivity depends on the environmental conditions. The genome-scale metabolic model provides useful information for the evaluation of the metabolic capabilities, and prediction of the metabolic characteristics, of Synechocystis sp. PCC6803.  相似文献   

19.
The photosynthetic growth of Synechocystis sp. PCC6803 ceased upon expression of Rhodobacter sphaeroides chlorophyllide a reductase (COR). However, an increase in cytosolic superoxide dismutase level in the recombinant Synechocystis sp. PCC6803 completely reversed the growth cessation. This demonstrates that COR generates superoxide in Synechocystis sp. PCC6803. Considering the dissolved oxygen (DO) level suitable for COR, the intracellular DO of this oxygenic photosynthetic cell appears to be low enough to support COR-mediated superoxide generation. The growth arrest of Synechocystis sp. PCC6803 by COR may give an insight into the evolutionary path from bacteriochlorophyll a biosynthetic pathway to chlorophyll a, which bypasses COR reaction.  相似文献   

20.
Synechocystis sp. strain PCC 6803 GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase were coexpressed in Escherichia coli. The E. coli transformant produced sepiapterin, which was identified by high-performance liquid chromatography and enzymatically converted to dihydrobiopterin by sepiapterin reductase. Aldose reductase, another indispensable enzyme for sepiapterin production, may be endogenous in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号