首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an essential role in glycolysis by catalyzing the conversion of d-glyceraldehyde 3-phosphate (d-G3P) to 1,3-diphosphoglycerate using NAD+ as a cofactor. In this report, the GAPDH gene from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (GAPDH-tk) was cloned and the protein was purified to homogeneity. GAPDH-tk exists as a homotetramer with a native molecular mass of 145 kDa; the subunit molecular mass was 37 kDa. GAPDH-tk is a thermostable protein with a half-life of 5 h at 80–90°C. The apparent K m values for NAD+ and d-G3P were 77.8 ± 7.5 μM and 49.3 ± 3.0 μM, respectively, with V max values of 45.1 ± 0.8 U/mg and 59.6 ± 1.3 U/mg, respectively. Transmission electron microscopy (TEM) and image processing confirmed that GAPDH-tk has a tetrameric structure. Interestingly, GAPDH-tk migrates as high molecular mass forms (~232 kDa and ~669 kDa) in response to oxidative stress.  相似文献   

2.
Replication factor C (RFC) catalyzes the assembly of circular proliferating cell nuclear antigen (PCNA) clamps around primed DNA, enabling processive synthesis by DNA polymerase. The RFC-like genes, arranged in tandem in the Thermococcus kodakaraensis KOD1 genome, were cloned individually and co-expressed in Escherichia coli cells. T. kodakaraensis KOD1 RFC homologue (Tk-RFC) consists of the small subunit (Tk-RFCS: MW=37.2 kDa) and the large subunit (Tk-RFCL: MW=57.2 kDa). The DNA elongation rate of the family B DNA polymerase from T. kodakaraensis KOD1 (KOD DNA polymerase), which has the highest elongation rate in all thermostable DNA polymerases, was increased about 1.7 times, when T. kodakaraensis KOD1 PCNA (Tk-PCNA) and the Tk-RFC at the equal molar ratio of KOD DNA polymerase were reacted with primed DNA.  相似文献   

3.
张欢欢  陈柔珂  徐俊 《微生物学报》2024,64(5):1494-1505
【目的】脯肽酶是一种能从二肽(Xaa-Pro)的C末端水解脯氨酸或羟脯氨酸残基的肽酶。对深海来源的雅氏火球菌(Pyrococcus yayanosii) CH1基因组中PYCH_07700基因编码的蛋白Pyprol的体外酶学性质进行研究,以期发现新型脯肽酶。【方法】在小宝岛热球菌(Thermococcus kodakarensis) TS559中异源表达Pyprol。使用二肽Met-Pro作为底物,检测重组蛋白的脯肽酶活性。【结果】Pyprol的最适温度为100 ℃,最适pH为6.0。Pyprol在与Co2+结合时活性最高,最适的金属离子浓度为1.2 mmol/L。与P. furiosus来源的脯肽酶Pfprol相比,Pyprol在更宽的pH范围具有活性,并且能够耐受更高浓度的金属离子。Pyprol是耐压蛋白,最适静水压为40 MPa。与常压条件下相比,40 MPa下,Pyprol在40、70和100 ℃均有更高的活性。【结论】来源于深海热液喷口的严格嗜压的超嗜热古菌P. yayanosii CH1的新型脯肽酶Pyprol具有热稳定和耐压特性。  相似文献   

4.

Phytoene (C40H64) is an isoprenoid and a precursor of various carotenoids which are of industrial value. Archaea can be considered to exhibit a relatively large capacity to produce isoprenoids, as they are components of their membrane lipids. Here, we aimed to produce isoprenoids such as phytoene in the hyperthermophilic archaeon Thermococcus kodakarensis. T. kodakarensis harbors a prenyltransferase gene involved in the biosynthesis of farnesyl pyrophosphate and geranylgeranyl pyrophosphate, which are precursors of squalene and phytoene, respectively. However, homologs of squalene synthase and phytoene synthase, which catalyze their condensation reactions, are not found on the genome. Therefore, a squalene/phytoene synthase homolog from an acidothermophilic archaeon Sulfolobus acidocaldarius, Saci_1734, was introduced into the T. kodakarensis chromosome under the control of a strong promoter. Production of the Saci_1734 protein was confirmed in this strain, and the generation of phytoene was detected (0.08–0.75 mg L−1 medium). We then carried out genetic engineering in order to increase the phytoene production yield. Disruption of an acetyl-CoA synthetase I gene involved in hydrolyzing acetyl-CoA, the precursor of phytoene, together with the introduction of a second copy of Saci_1734 led to a 3.4-fold enhancement in phytoene production.

  相似文献   

5.

Hyperthermophilic microorganisms are an important asset in the toolkits of biotechnologists, biochemists and evolutionary biologists. The anaerobic archaeon, Thermococcus kodakarensis, has become one of the most useful hyperthermophilic model species, not least due to its natural competence and genetic tractability. Despite this, the range of genetic tools available for T. kodakarensis remains limited. Using sequencing and phylogenetic analyses, we determined that the rolling-circle replication origin of the cryptic mini-plasmid pTP2 from T. prieurii is suitable for plasmid replication in T. kodakarensis. Based on this replication origin, we present a novel series of replicative E. coliT. kodakarensis shuttle vectors. These shuttle vectors have been constructed with three different selectable markers, allowing selection in a range of T. kodakarensis backgrounds. Moreover, these pTP2-derived plasmids are compatible with the single-existing E. coliT. kodakarensis shuttle vector, pLC70. We show that both pTP2-derived and pLC70-derived plasmids replicate faithfully while cohabitating in T. kodakarensis cells. These plasmids open the door for new areas of research in plasmid segregation, DNA replication and gene expression.

  相似文献   

6.
We have applied chromatin sequencing technology to the euryarchaeon Thermococcus kodakarensis, which is known to possess histone‐like proteins. We detect positioned chromatin particles of variable sizes associated with lengths of DNA differing as multiples of 30 bp (ranging from 30 bp to >450 bp) consistent with formation from dynamic polymers of the archaeal histone dimer. T. kodakarensis chromatin particles have distinctive underlying DNA sequence suggesting a genomic particle‐positioning code and are excluded from gene‐regulatory DNA suggesting a functional organization. Beads‐on‐a‐string chromatin is therefore conserved between eukaryotes and archaea but can derive from deployment of histone‐fold proteins in a variety of multimeric forms.  相似文献   

7.
5′-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5′-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.  相似文献   

8.
The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.  相似文献   

9.
The crystal structure of family B DNA polymerase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 (KOD DNA polymerase) was determined. KOD DNA polymerase exhibits the highest known extension rate, processivity and fidelity. We carried out the structural analysis of KOD DNA polymerase in order to clarify the mechanisms of those enzymatic features. Structural comparison of DNA polymerases from hyperthermophilic archaea highlighted the conformational difference in Thumb domains. The Thumb domain of KOD DNA polymerase shows an "opened" conformation. The fingers subdomain possessed many basic residues at the side of the polymerase active site. The residues are considered to be accessible to the incoming dNTP by electrostatic interaction. A beta-hairpin motif (residues 242-249) extends from the Exonuclease (Exo) domain as seen in the editing complex of the RB69 DNA polymerase from bacteriophage RB69. Many arginine residues are located at the forked-point (the junction of the template-binding and editing clefts) of KOD DNA polymerase, suggesting that the basic environment is suitable for partitioning of the primer and template DNA duplex and for stabilizing the partially melted DNA structure in the high-temperature environments. The stabilization of the melted DNA structure at the forked-point may be correlated with the high PCR performance of KOD DNA polymerase, which is due to low error rate, high elongation rate and processivity.  相似文献   

10.
NADH oxidases (NOXs) are important enzymes in detoxifying oxidative stress and regenerating oxidized pyridine nucleotides. In the present study, a NOX from Thermococcus kodakarensis KOD1 (NOXtk) was recombinantly expressed in Escherichia coli and purified to homogeneity. NOXtk displayed NADH oxidase activity that was inhibited by oxidization. Under physiological conditions, unoxidized and oxidized NOXtk formed dimers and hexamers, respectively. Mutating the single cysteine residue Cys45 to alanine (NOXtkC45A) decreased NADH oxidase activity without affecting dimerization or hexamerization, suggesting that oligomerization does not occur through disulfide bond formation. Pull-down assay results indicated that an ATP/NAD kinase from T. kodakarensis KOD1 (ANKtk) binds to NOXtk. Use of several assays revealed that ANKtk can only bind to oxidized hexameric NOXtk, through which it inhibits ANKtk activity. Because ANKtk converts NADH to NADPH (an important factor in oxidative stress protection), a model based on in vitro result was proposed in which NOXtk hexamerization under oxic conditions inhibits both NOXtk and ANKtk activities, thereby sensitizing cells to oxidative stress-induced death.  相似文献   

11.
The enzyme O6-methylguanine-DNA methyltransferase (MGMT) is the most common form of cellular defense against the biological effects of O6-methylguanine (O6-MeG) in DNA. Based on PCR amplification using primers derived from conserved amino acid sequences of MGMTs from 11 species, we isolated the DNA region coding for MGMT from the hyperthermophilic archaeon Pyrococcus sp. KOD1. The MGMT gene from KOD1 (mgtk) comprises 522 nucleotides, encoding 174 amino acid residues; its product shows considerable similarity to the corresponding mammalian, yeast and bacterial enzymes, especially around putative methyl acceptor sites. Phylogenetic analysis of MGMTs showed that archaeal MGMTs were grouped with their bacterial counterparts. The location of the MGMT gene on the KOD1 chromosome was also determined. The cloned KOD1 MGMT gene was overexpressed using the T7 RNA polymerase expression system, and the recombinant protein was purified by ammonium sulfate fractionation, heat treatment, ion-exchange chromatography and gel filtration chromatography. The purified recombinant protein was assayed for its enzyme activity by monitoring transfer of [3H]methyl groups from the substrate DNA to the MGMT protein; the activity was found to be stable at 90° C for at least 30 min. When the mgtk gene was placed under the control of the lac promoter and expressed in the methyltransferase-deficient Escherichia coli strain KT233 (Δada, Δogt) cells, a MGMT was produced. The enzyme was functional in vivo and complemented the mutant phenotype, making the cells resistant to the cytotoxic properties of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine. Received: 2 October 1997 / Accepted: 28 November 1997  相似文献   

12.
The gdhA gene encoding glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was cloned and sequenced. Phylogenetic analysis was performed on an alignment of 25 GDH sequences including KOD1-GDH, and two protein families were distinguished, as previously reported. KOD1-GDH was classified as new member of the hexameric GDH Family II. The gdhA gene was expressed in Escherichia coli, and recombinant KOD1-GDH was purified. Its enzymatic characteristics were compared with those of the native KOD1-GDH. Both enzymes had a molecular mass of 47 300 Da and were shown to be functional in a hexameric form (284 kDa). The N-terminal amino acid sequences of native KOD1-GDH and the recombinant GDH were VEIDPFEMAV and MVEIDPFEMA, respectively, indicating that native KOD1-GDH does not retain the initial methionine at the N-terminus. The recombinant GDH displayed enzyme characteristics similar to those of the native GDH, except for a lower level of thermostability, with a half-life of 2 h at 100° C, compared to 4 h for the native enzyme purified from KOD1. Kinetic studies suggested that the reaction is biased towards glutamate production. KOD1-GDH utilized both coenzymes NADH and NADPH, as do most eukaryal GDHs. Received: 6 May 1997 / Accepted: 23 September 1997  相似文献   

13.
Coenzyme A (CoA) biosynthesis in bacteria and eukaryotes is regulated primarily by feedback inhibition towards pantothenate kinase (PanK). As most archaea utilize a modified route for CoA biosynthesis and do not harbour PanK, the mechanisms governing regulation of CoA biosynthesis are unknown. Here we performed genetic and biochemical studies on the ketopantoate reductase (KPR) from the hyperthermophilic archaeon Thermococcus kodakarensis. KPR catalyses the second step in CoA biosynthesis, the reduction of 2‐oxopantoate to pantoate. Gene disruption of TK1968, whose product was 20–29% identical to previously characterized KPRs from bacteria/eukaryotes, resulted in a strain with growth defects that were complemented by addition of pantoate. The TK1968 protein (Tk‐KPR) displayed reductase activity specific for 2‐oxopantoate and preferred NADH as the electron donor, distinct to the bacterial/eukaryotic NADPH‐dependent enzymes. Tk‐KPR activity decreased dramatically in the presence of CoA and KPR activity in cell‐free extracts was also inhibited by CoA. Kinetic studies indicated that CoA inhibits KPR by competing with NADH. Inhibition of ketopantoate hydroxymethyltransferase, the first enzyme of the pathway, by CoA was not observed. Our results suggest that CoA biosynthesis in T. kodakarensis is regulated by feedback inhibition of KPR, providing a feasible regulation mechanism of CoA biosynthesis in archaea.  相似文献   

14.
Genomic analysis of the hyperthermophilic archaeon Thermococcus onnurineus NA1 (TNA1) revealed the presence of a 471-bp open reading frame with 93% similarity to the dUTPase from Pyrococcus furiosus. The dUTPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dUTP at about a 10-fold higher rate than dCTP. The protein behaved as a dimer in gel filtration chromatography, even though it contains five motifs that are conserved in all homotrimeric dUTPases. The dUTPase showed optimum activity at 80°C and pH 8.0, and it was highly thermostable with a half-life (t 1/2) of 170 min at 95°C. The enzymatic activity of the dUTPase was largely unaffected by variations in MgCl2, KCl, (NH4)2SO4, and Triton X-100 concentrations, although it was reduced by bovine serum albumin. Addition of the dUTPase to polymerase chain reactions (PCRs) run with TNA1 DNA polymerase significantly increased product yield, overcoming the inhibitory effect of dUTP. Further, addition of the dUTPase allowed PCR amplification of targets up to 15 kb in length using TNA1 DNA polymerase. This enzyme also improved the PCR efficiency of other archaeal family B type DNA polymerases, including Pfu and KOD.  相似文献   

15.
β-Glycosidase from Thermococcus kodakarensis KOD1 is a hyperthermophilic enzyme with β-glucosidase, β-mannosidase, β-fucosidase and β-galactosidase activities. Sequence alignment with other β-glycosidases from hyperthermophilic archaea showed two unique active site residues, Gln77 and Asp206. These residues were represented by Arg and Asp in all other hyperthermophilic β-glycosidases. The two active site residues were mutated to Q77R, D206N and D206Q, to study the role of these unique active site residues in catalytic activity and to alter the substrate specificity to enhance its β-glucosidase activity. The secondary structure analysis of all the mutants showed no change in their structure and exhibited in similar conformation like wild-type as they all existed in dimer form in an SDS-PAGE under non-reducing conditions. Q77R and D206Q affected the catalytic activity of the enzyme whereas the D206N altered the catalytic turn-over rate for glucosidase and mannosidase activities with fucosidase activity remain unchanged. Gln77 is reported to interact with catalytic nucleophile and Asp206 with axial C2-hydroxyl group of substrates. Q77R might have made some changes in three dimensional structure due to its electrostatic effect and lost its catalytic activity. The extended side chains of D206Q is predicted to affect the substrate binding during catalysis. The high-catalytic turn-over rate by D206N for β-glucosidase activity makes it a useful enzyme in cellulose degradation at high temperatures.  相似文献   

16.
The coenzyme A biosynthesis pathways in most archaea involve two unique enzymes, pantoate kinase and phosphopantothenate synthetase, to convert pantoate to 4′-phosphopantothenate. Here, we report the first crystal structure of pantoate kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis and its complex with ATP and a magnesium ion. The electron density for the adenosine moiety of ATP was very weak, which most likely relates to its broad nucleotide specificity. Based on the structure of the active site that contains a glycerol molecule, the pantoate binding site and the roles of the highly conserved residues are suggested.  相似文献   

17.
18.
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.  相似文献   

19.
20.
 A gene encoding a RecA/RAD51 homologue from a hyperthermophilic archaeon, Pyrococcus sp. KOD1 (Pk), was cloned, sequenced and expressed in Escherichia coli. The deduced 210-amino acid sequence was compared to homologues from bacteria (RecA), eukaryotes (RAD51, DMC1) and archaea (RadA). The entire protein from Pk (Pk-REC) basically corresponds to the essential central domain of its counterparts and lacks the two smaller RecA subdomains at the N- and C-termini. The sequence comparison suggests that Pk-REC represents a common prototype of RecA, RAD51, DMC1 and RadA, with higher enzymatic activity. Recombinant Pk-REC was fully active and complemented the ultraviolet light sensitivity of an E. coli recA mutant strain. Received: 11 June 1996 / Accepted: August 31 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号