共查询到20条相似文献,搜索用时 0 毫秒
1.
Werner Liesack Friedhelm Bak Jan-Ulrich Kreft E. Stackebrandt 《Archives of microbiology》1994,162(1-2):85-90
A polyphasic approach was used in which genotypic and phenotypic properties of a gram-negative, obligately anaerobic, rod-shaped bacterium isolated from a black anoxic freshwater mud sample were determined. Based on these results, the name Holophaga foetida gen. nov., sp. nov. is proposed. This microorganism produced dimethylsulfide and methanethiol during growth on trimethoxybenzoate or syringate. The only other compounds utilized were pyruvate and trihydroxybenzenes such as gallate, phloroglucinol, or pyrogallol. The aromatic compounds were degraded to acetate. Although comparison of the signature nucleotide pattern of the five established subclasses of Proteobacteria with the 16S rDNA sequence of Holophaga foetida revealed a relationship to members of the -subclass, the phylogenetic position within the radiation of this class is so deep and dependent upon the number and selection of reference sequences that its affiliation to the Proteobacteria must be considered tentative. The type strain is H. foetida strain TMBS4 (DSM 6591).F. Bak died on 27 December 1992. A very promising and productive career thus ended much too early 相似文献
2.
Halomonas shantousis sp. nov., a novel biogenic amines degrading bacterium isolated from Chinese fermented fish sauce 总被引:1,自引:0,他引:1
Wei Jiang Chunsheng Li Binghong Xu Xiaoyan Dong Ning Ma Jinzhi Yu Dongfeng Wang Ying Xu 《Antonie van Leeuwenhoek》2014,106(6):1073-1080
A Gram-negative, aerobic, short rod-shaped and non-motile bacterium, designated SWA25T, was isolated from Chinese fermented fish sauce in Shantou, Guangdong Province, China. Strain SWA25T was moderately halophilic, formed colourless colonies and grew at 10–45 °C (optimum, 37 °C) and pH 4–9 (optimum, 6–7) in the presence of 0.5–22.5 % (w/v) NaCl (optimum, 3 %). The major cellular fatty acids (>10 %) were identified as C18:1 ω7C, C16:0, C16:1 ω7c, and C19:0 cyclo ω8c, and the predominant respiratory ubiquinone was Q-9. The genomic DNA G+C content was 61.3 ± 2.1 mol %. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SWA25T belonged to the genus Halomonas in the family Halomonadaceae. The closest relatives were Halomonas xianhensis A-1T (96.5 % 16S rRNA gene sequence similarity), H. lutea DSM 23508T (96.5 %) and H. muralis LMG 20969T (96.1 %). DNA–DNA hybridization assays showed 30.7 ± 2.6 % relatedness between strain SWA25T and H. xianhensis A-1T, and 39.4 ± 4.1 % between strain SWA25T and H. lutea DSM 23508T. On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain SWA25T should be placed in the genus Halomonas as a representative of a novel species. The name Halomonas shantousis sp. nov. is proposed, with SWA25T(=CCTCC AB 2013151T = JCM 19368T) as the type strain. 相似文献
3.
《Systematic and applied microbiology》2020,43(4):126099
Two marine bacterial strains designated Y2-1-60T and GM1-28 were isolated from sediments of cordgrass and mangrove along the Luoyang estuary in Quanzhou Bay, China, respectively. Both strains were Gram-staining-negative, straight rod-shaped, non-flagellum, facultatively anaerobic, nitrogen-fixing, and did not contain carotenoid pigment. Catalase activities were found to be weak positive and oxidase activities negative. The 16S rRNA gene sequences of the two strains were identical and had maximum similarity of 98.0% with Maribellus luteus XSD2T, and of <94.5% with other species. ANI value (96.9%) and DDH estimate (71.5%) between the two strains supported that they belonged to the same species. ANI value and DDH estimate between the two strains and M. luteus XSD2T was 74.3% and 19.4%, respectively, indicating that they represent a novel species. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis indicated that strains Y2-1-60T and GM1-28 formed a monophyletic branch within the genus Maribellus. The respiratory quinone was menaquinone MK-7. The major fatty acid (>10%) consisted of iso-C15:0, and iso-C17:0 3-OH. The polar lipids consisted of phosphatidylethanolamine and several unidentified lipids. The genomic G + C contents were 41.9–42.0 mol%. Gene annotation revealed that strains Y2-1-60T and GM1-28 contained a set of nif gene cluster (nifHDKENB) responsible for nitrogen fixation. Based on the above characteristics, strains Y2-1-60T and GM1-28 represent a novel species within the genus Maribellus. Thus, Maribellus sediminis sp. nov. is proposed with type strain Y2-1-60T (=MCCC 1K04285T = KCTC 72884T), isolated from cordgrass sediment and strain GM1-28 (=MCCC 1K04384 = KCTC 72880), isolated from mangrove sediment. 相似文献
4.
Qin QL Zhao DL Wang J Chen XL Dang HY Li TG Zhang YZ Gao PJ 《FEMS microbiology letters》2007,271(1):53-58
An orange-pigmented, Gram-negative, nonmotile, strictly aerobic and oxidase- and catalase-positive bacterium (SM-A87(T)) was isolated from the deep-sea sediment of the southern Okinawa Trough area. The main fatty acids were i15 : 0, i17 : 0 3OH, i15 : 1 G, i17 : 1 omega 9c, 15 : 0, i15 : 0 3OH and summed feature 3 (comprising i-15 : 0 2OH and/or 16 : 1 omega 7c). MK-6 was the predominant respiratory quinone. DNA G+C content was 35.8 mol%. Flexirubin-type pigments were absent. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain SM-A87(T) formed a distinct lineage within the family Flavobacteriaceae, with <93% sequence similarity to the nearest strain of genus Salegentibacter. Moreover, strain SM-A87(T) could be distinguished from the nearest phylogenetic neighbors by a number of chemotaxonomic and phenotypic properties. On the basis of polyphasic analyses, it is proposed that strain SM-A87(T) be classified in a novel genus and a new species in the family Flavobacteriaceae, designated Wangia profunda gen. nov., sp. nov. The type strain is SM-A87(T) (CCTCC AB 206139(T)=DSM 18752). 相似文献
5.
6.
《Systematic and applied microbiology》2020,43(2):126072
Polyphasic analysis of ten isolates of the red-pigmented bacteria isolated from ten Arthrospira cultures originating from different parts of the world is described. The 16S rRNA analysis showed <95 % identity with the known bacteria on public databases, therefore, additional analyses of fatty acids profiles, MALDI-TOF/MS, genome sequencing of the chosen isolate and following phylogenomic analyses were performed. Gram-stain-negative, strictly aerobic rods were positive for catalase, negative for oxidase, proteolytic and urease activity. Major fatty acids were 15 : 0 iso, 17:0 iso 3 OH and 17:1 iso w9c/16:0 10-methyl. The whole phylogenomic analyses revealed that the genomic sequence of newly isolated strain DPMB0001 was most closely related to members of Cyclobacteriaceae family and clearly indicated distinctiveness of newly isolated bacteria. The average nucleotide identity and in silico DNA–DNA hybridisation values were calculated between representative of the novel strains DPMB0001 and its phylogenetically closest species, Indibacter alkaliphilus CCUG57479 (LW1)T (ANI 69.2 % is DDH 17.2 %) and Mariniradius saccharolyticus AK6T (ANI 80.02 % isDDH 26.1 %), and were significantly below the established cut-off <94 % (ANI) and <70 % (isDDH) for species and genus delineation.The obtained results showed that the analysed isolates represent novel genus and species, for which names Arthrospiribacter gen nov. and Arthrospiribacter ruber sp. nov. (type strain DPMB0001 = LMG 31078 = PCM 3008) is proposed. 相似文献
7.
Kim A. DeWeerd Linda Mandelco Ralph S. Tanner Carl R. Woese Joseph M. Suflita 《Archives of microbiology》1990,154(1):23-30
An anaerobic, dehalogenating, sulfate-reducing bacterium, strain DCB-1, is described and nutritionally characterized. The bacterium is a Gram-negative, nonmotile, non-sporeforming large rod with an unusual morphological feature which resembles a collar. The microorganism reductively dehalogenates meta substituted halobenzoates and also reduces sulfate, sulfite and thiosulfate as electron acceptors. The bacterium requires nicotinamide, 1,4-naphthoquinone and thiamine for optimal growth in a defined medium. The microorganism can grow autotrophically on H2:CO2 with sulfate or thiosulfate as terminal electron acceptors. It can also grow heterotrophically with pyruvate, several methoxybenzoates, formate plus sulfate or benzoate plus sulfate. It ferments pyruvate to acetate and lactate in the absence of other electron acceptors. The bacterium is inhibited by MoO
inf4
sup2-
or SeO
inf4
sup2-
as well as tetracycline, chloramphenicol, kanamycin or streptomycin. Cytochrome c3 and desulfoviridin have been purified from cells grown in defined medium. 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria. We propose that the strain be named Desulfomonile tiedjei.Non-standard abbreviations PIPES
piperazine-N,N-bis[2-ethanesulfonic acid]
- MES
2-[N-morpholino]ethanesulfonic acid
- TES
N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid
- HQNO
2-N-heptyl-4-hydroxy-quinoline-N-oxide
- CCCP
carbonyl-cyanide-m-chlorophenylhydrazine
- CM
carboxymethyl 相似文献
8.
Alteromonas infernus
sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent 总被引:2,自引:2,他引:0
G.H.C. Raguénès A. Peres R. Ruimy P. Pignet R. Christen M. Loaec H. Rougeaux G. Barbier & J.G. Guezennec 《Journal of applied microbiology》1997,82(4):422-430
A deep-sea, aerobic, mesophilic and heterotrophic new bacterium was isolated from a sample of fluid collected among a dense population of Riftia pachyptila , in the vicinity of an active hydrothermal vent of the Southern depression of the Guaymas basin (Gulf of California). On the basis of phenotypic and phylogenetic analyses and DNA/DNA relatedness, the strain GY785 was recognized as a new species of the genus Alteromonas and the name of Alteromonas infernus is proposed. During the stationary phase in batch cultures in the presence of glucose, this bacterium secreted two unusual polysaccharides. The water-soluble exopolysaccharide-1 produced xrcontained glucose, galactose, galacturonic and glucuronic acids as monosaccharides. The gel-forming exopolysaccharide-2 was separated from the bacterial cells by dialysis against distilled water and partially characterized. 相似文献
9.
A bright, saffron-colored marine bacterium HTCC2559T was isolated from the Bermuda Atlantic Time Series station in the western Sargasso Sea, Atlantic Ocean by high throughput culturing methods and characterized by polyphasic approaches. Phenotypic data and phylogenetic analyses showed that the strain is a member of the family Flavobacteriaceae. The strain was gram-negative, non-motile, chemoheterotrophic, strictly aerobic, NaCl-requiring, rod-shaped cells that contain carotenoid pigments but not flexirubin. Several kinds of macromolecules (gelatin, DNA, starch, casein, and elastin) were degraded and carbohydrates, sugar alcohols, organic acids, and amino acids were utilized as sole carbon sources. The dominant fatty acids were branched or hydroxy acids, and 3-OH i17:0, i15:0, i15:1, and i17:1 omega9c were abundant. The DNA G+C content of the strain is 34.8 mol%. Phylogenetic analyses using three treeing algorithms based on 16S rRNA gene sequences revealed that the strain formed a very distinct lineage that is allied closely with several seawater environmental clones in the family Flavobacteriaceae. Therefore, it is proposed from the polyphasic studies that strain HTCC2559T (=ATCC BAA-628T = KCTC 12090T) belongs to a new genus and species named Croceibacter atlanticus gen. nov., sp. nov. 相似文献
10.
《Systematic and applied microbiology》2023,46(5):126440
Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668T and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668T (=CECT 30723T) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent. 相似文献
11.
A novel strictly aerobic, gliding, Gram-negative, rod-shaped, halo- and mesophilic bacterium (TD-ZX30(T)) was isolated from a seawater sample collected on the Pacific coastline of Japan near Kamakura City (Fujisawa, Kanagawa). The temperature range for growth of TD-ZX30(T) was between 16 and 44 degrees C. The DNA G+C content was 32.0mol%. The predominant fatty acids were iso-C(15:1) G, iso-C(15:0), iso-C(16:0) 3-OH, iso-C(15:0) 3-OH, Summed feature (iso-C(15:0) 2-OH and/or C(16:1)omega7c), iso-C(17:0) 3-OH, and C(15:0). MK-6 was the only respiratory quinone. Zeaxanthin was the major carotenoid pigment produced but flexirubin-type pigments were not produced. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that TD-ZX30(T) belonged to a distinct lineage in the family Flavobacteriaceae, sharing 93.9% sequence similarity with the nearest species Olleya marilimosa. TD-ZX30(T) could be distinguished from the other members of the family Flavobacteriaceae by a number of chemotaxonomic and phenotypic characteristics. The results of polyphasic taxonomic analyses suggested that TD-ZX30(T) represents a novel genus and a novel species, for which the name Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov. is proposed. The type strain is TD-ZX30(T) (=NBRC 102119=CCUG 53614=DSM 18436). 相似文献
12.
Phenotypic and chemotaxonomic characteristics of five isolates of acetylenereducing (nitrogen-fixing) oligotrophic bacteria from a paddy soil were investigated. They showed similar phenotypic characteristics: they were aerobic, asporogenous, gram-negative, motile by a polar flagellum, and irregular rods. On full strength nutrient broth (NB) growth was severely suppressed, but well supported on 10-to 10000-fold diluted NB. They consumed glucose but produced no acid, and also utilized phenolic acids such as ferulic acid or p-coumaric acid. The cellular fatty acid composition, quinone system and DNA base composition of the isolates were investigated. Cellular fatty acids mainly consisted of straightchain unsaturated C18 : 1 (62–81% of total fatty acids). Ubiquinone Q-10 and a high guanine-plus-cytosine content (65.1–66.0 mol%) were found. The taxonomic status of the isolates is discussed and a new genus, Agromonas, with a single species Agromonas oligotrophica sp. nov., is proposed for these isolates. The type strain of A. oligotrophica is JCM 1494. 相似文献
13.
A novel gram-negative, thermophilic, acetate-oxidizing, sulfate-reducing bacterium, strain A8444, isolated from hot North
Sea oil field water, is described. The rod-shaped cells averaged 1 μm in width and 2.5 μm in length. They were motile by means
of a single polar flagellum. Growth was observed between 44 and 74°C, with an optimum at 60°C. Spores were not produced. Sulfate
and sulfite were used as electron acceptors. Sulfur, thiosulfate, nitrate, fumarate, and pyruvate were not reduced. In the
presence of sulfate, growth was observed with acetate, lactate, pyruvate, butyrate, succinate, malate, fumarate, valerate,
caproate, heptanoate, octanoate, nonadecanoate, decanoate, tridecanoate, pentadecanoate, palmitate, heptadecanoate, stearate,
and ethanol. Pyruvate, lactate, and fumarate did not support fermentative growth. Cytochromes of the c-type were present. Desulfoviridin, desulforubidin, P582, and desulfofuscidin were not present. The G+C content of the DNA
was 51 mol%. Sequence analysis of 16S rDNA showed that phylogenetically strain A8444 belongs to the delta subdivision of the
Proteobacteria. The closest relatives are Desulfacinum infernum and Syntrophobacter wolinii. Strain A8444 is described as the type strain of the new taxon Thermodesulforhabdus norvegicus gen. nov., sp. nov.
Received: 4 May 1995 / Accepted: 11 July 1995 相似文献
14.
Huang Zhaobin Guo Yu Xiao Qingqing Liu Xiupian Lai Qiliang 《Antonie van Leeuwenhoek》2021,114(10):1551-1563
Antonie van Leeuwenhoek - A novel bright-yellow pigmented bacterial strain SM2-FT was isolated from a mangrove sediment collected at the mangrove coast of Luoyang estuary, Quanzhou, China. Strain... 相似文献
15.
Yukphan P Malimas T Potacharoen W Tanasupawat S Tanticharoen M Yamada Y 《The Journal of General and Applied Microbiology》2005,51(5):301-311
An acetic acid bacterium, designated as isolate AC28(T), was isolated from a flower of red ginger (khing daeng in Thai; Alpinia purpurata) collected in Chiang Mai, Thailand, at pH 3.5 by use of a glucose/ethanol/acetic acid (0.3%, w/v) medium. A phylogenetic tree based on 16S rRNA gene sequences for 1,376 bases showed that isolate AC28(T) constituted a cluster along with the type strain of Kozakia baliensis. However, the isolate formed an independent cluster in a phylogenetic tree based on 16S-23S rDNA internal transcribed spacer (ITS) region sequences for 586 bases. Pair-wise sequence similarities of the isolate in 16S rRNA gene sequences for 1,457 bases were 93.0-88.3% to the type strains of Asaia, Kozakia, Swaminathania, Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, and Saccharibacter species. Restriction analysis of 16S-23S rDNA ITS regions discriminated isolate AC28(T) from the type strains of Asaia and Kozakia species. Cells were non-motile. Colonies were pink, shiny, and smooth. The isolate produced acetic acid from ethanol. Oxidation of acetate and lactate was negative. The isolate grew on glutamate agar and mannitol agar. Growth was positive on 30% D-glucose (w/v) and in the presence of 0.35% acetic acid (w/v), but not in the presence of 1.0% KNO(3) (w/v). Ammoniac nitrogen was hardly assimilated on a glucose medium or a mannitol medium. Production of dihydroxyacetone from glycerol was weakly positive. The isolate did not produce a levan-like polysaccharide on a sucrose medium. Major isoprenoid quinone was Q-10. DNA base composition was 63.1 mol% G+C. On the basis of the results obtained, Neoasaia gen. nov. was proposed with Neoasaia chiangmaiensis sp. nov. The type strain was isolate AC28(T) (=BCC 15763(T) =NBRC 101099(T)). 相似文献
16.
Four strains of obligately heterotrophic bacteria isolated from the oxygen-sulfide interface of the Black Sea are characterized. The bacteria are aerobic, Gram-negative, with lemon-like, nonmotile cells. Bacteriochlorophyll a is not detected. They are mesophilic and neutrophilic with a temperature range of 8–35 °C (optimum 25) and pH range of 6.5–8.5 (optimum 7.8). Their growth is NaCl dependent within a range of 5 and 60 (optimum 20) g l−1. They are able to oxidize thiosulfate, sulfide and elemental sulfur to sulfate and to use metabolic energy from these reactions (lithoheterotrophy). According to the level of DNA reassociation of more than 40%, all isolates represent a single generic group. The G+C content of the DNA was in the range of 67.5–69.2 mol%. According to phylogenetic analysis, the new isolates form a separate branch in the alpha-3 subdivision of the Proteobacteria together with two undescribed marine bacterial strains. On the basis of phenotypical and genomic properties, the new isolates are described as a new genus and species Citreicella thiooxidans gen. nov., sp. nov. The type strain is CHLG 1T (=DSM 10146, UNIQEM U 228). 相似文献
17.
Simon-Colin C Raguénès G Cozien J Guezennec JG 《Journal of applied microbiology》2008,104(5):1425-1432
Aims: The objective of the present work was to describe a new deep-sea, aerobic, mesophilic and heterotrophic bacterium, referenced as strain AT1214, able to produce polyhydroxyalkanoates (PHAs) under laboratory conditions. This bacterium was isolated from a shrimp collected nearby a hydrothermal vent located on the Mid-Atlantic Ridge. Methods and Results: This micro-organism, on the basis of the phenotypical features and genotypic investigations, can be clearly assigned to the Halomonas genus and the name of Halomonas profundus is proposed. Optimal growth occurred between 32 and 37°C at a pH between 8 and 9 and at ionic strength between 20 and 30 g l−1 of sea salts. The G + C content of DNA was 58·6%. This bacterium produced PHAs of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Conclusions: The bacterium H. profundus produces PHA of 3HB and 3HV monomers from different carbon sources. Significance and Impact of the Study: PHAs share physical and material properties that suggest them for application in various areas, and are considered as an alternative to nonbiodegradable plastics produced from fossil oils. In this study, we describe a new bacteria isolated from a deep-sea hydrothermal vent with the capability to produce polyesters of biotechnological interest. 相似文献
18.
Romanenko LA Uchino M Falsen E Lysenko AM Zhukova NV Mikhailov VV 《The Journal of General and Applied Microbiology》2005,51(2):65-71
Two Pseudomonas-like yellow-orange-pigmented non-fluorescent denitrifying strains KMM 235 and KMM 1447T were isolated from marine ascidian specimens and investigated by a polyphasic approach to clarify their taxonomic status. On the basis of 16S rDNA gene sequence data the new isolates clustered with the Pseudomonas stutzeri species group with sequence similarities of >98%. The results of DNA-DNA hybridization and biochemical characterization showed genetic and phenotypic distinction between strains KMM 235 and KMM 1447T and from the other validly described Pseudomonas species. Strain KMM 235 was found to be closely related to the type strain of Pseudomonas stutzeri in their phenotypic and genetic characteristics and represented, probably, a new P. stutzeri genomovar. It is proposed that strain KMM 1447T be classified as a new species of the genus Pseudomonas, Pseudomonas xanthomarina sp. nov., with the type strain KMM 1447T (=JCM 12468T=NRIC 0617T=CCUG 46543T). 相似文献
19.
Zhao Han Song Chun-Yi Yin Rui Yi Yan-Jun Yun Shuai-Ting Li Ying-Xiu Zhou Yan-Xia 《Antonie van Leeuwenhoek》2021,114(11):1915-1924
Antonie van Leeuwenhoek - A novel gram-negative, aerobic, pink, motile, gliding, rod-shaped bacterium, designated P51T, was isolated from saline silt samples in Yantai, China. It was able to grow... 相似文献
20.
Chintalapati Venkata Ramana Are Srinivas Yadav Subhash Lodha Tushar Tapas Mukherjee Pemmaraju Usha Kiran Chintalapati Sasikala 《Antonie van Leeuwenhoek》2013,103(4):885-898
Strain JC90T was isolated from a soda lake in Lonar, India. Strain JC90T maintains its external pH to 8.5 and participates in halite formation. Based on 16S rRNA gene sequence similarity studies, strain JC90T was found to belong to the genus Salinicoccus and is most closely related to “Salinicoccus kekensis” K164T (99.3 %), Salinicoccus alkaliphilus T8T (98.4 %) and other members of the genus Salinicoccus (<96.5 %). However Strain JC90T is <36 % related (based on DNA–DNA hybridization) with the type strains of “S. kekensis” K164T and S. alkaliphilus T8T. The DNA G+C content of strain JC90T was determined to be 46 mol %. The cell-wall amino acids were identified as lysine and glycine. Polar lipids were found to include diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl ethanolamine, an unidentified glycolipid and unidentified lipids (L1,2). Major hopanoids of strain JC90T were determined to be bacterial hopane derivatives (BHD1,2), diplopterol, diploptene and two unidentified hopanoids (UH1,2). The predominant isoprenoid quinone was identified as menaquinone (MK-6). Anteiso-C15:0 was determined to be the predominant fatty acid and significant proportions of iso-C14:0, C14:0, iso-C15:0, C16:0, iso-C16:0, iso-C17:0, anteiso-C17:0 and C18:02OH were also detected. The results of physiological and biochemical tests support the molecular evidence and allowed a clear phenotypic differentiation of strain JC90T from all other members of the genus Salinicoccus. Strain JC90T is therefore considered to represent a novel species, for which the name Salinicoccus halitifaciens sp. nov. is proposed. The type strain is JC90T (=KCTC 13894T =DSM 25286T). 相似文献