首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Penicillium expansum, the causal agent of blue mould rot, is a critical health concern because of the production of the mycotoxin patulin in colonized apple fruit tissue. Although patulin is produced by many Penicillium species, the factor(s) activating its biosynthesis are not clear. Sucrose, a key sugar component of apple fruit, was found to modulate patulin accumulation in a dose‐responsive pattern. An increase in sucrose culture amendment from 15 to 175 mm decreased both patulin accumulation and expression of the global regulator laeA by 175‐ and five‐fold, respectively, whilst increasing expression of the carbon catabolite repressor creA. LaeA was found to regulate several secondary metabolite genes, including the patulin gene cluster and concomitant patulin synthesis in vitro. Virulence studies of ΔlaeA mutants of two geographically distant P. expansum isolates (Pe‐21 from Israel and Pe‐T01 from China) showed differential reduction in disease severity in freshly harvested fruit, ranging from no reduction for Ch‐Pe‐T01 strains to 15%–25% reduction for both strains in mature fruit, with the ΔlaeA strains of Is‐Pe‐21 always showing a greater loss in virulence. The results suggest the importance of abiotic factors in LaeA regulation of patulin and other secondary metabolites that contribute to pathogenicity.  相似文献   

3.
The blue mould decay of apples is caused by Penicillium expansum and is associated with contamination by patulin, a worldwide regulated mycotoxin. Recently, a cluster of 15 genes (patA–patO) involved in patulin biosynthesis was identified in P. expansum. blast analysis revealed that patL encodes a Cys6 zinc finger regulatory factor. The deletion of patL caused a drastic decrease in the expression of all pat genes, leading to an absence of patulin production. Pathogenicity studies performed on 13 apple varieties indicated that the PeΔpatL strain could still infect apples, but the intensity of symptoms was weaker compared with the wild‐type strain. A lower growth rate was observed in the PeΔpatL strain when this strain was grown on nine of the 13 apple varieties tested. In the complemented PeΔpatL:patL strain, the ability to grow normally in apple and the production of patulin were restored. Our results clearly demonstrate that patulin is not indispensable in the initiation of the disease, but acts as a cultivar‐dependent aggressiveness factor for P. expansum. This conclusion was strengthened by the fact that the addition of patulin to apple infected by the PeΔpatL mutant restored the normal fungal colonization in apple.  相似文献   

4.
5.
Interest in species of the genus Penicillium is related to their ability to produce the mycotoxin patulin and to cause spoilage of fruit products worldwide. The sequence of the isoepoxydon dehydrogenase (idh) gene, a gene in the patulin biosynthetic pathway, was determined for 28 strains representing 12 different Penicillium species known to produce the mycotoxin patulin. Isolates of Penicillium carneum, Penicillium clavigerum, Penicillium concentricum, Penicillium coprobium, Penicillium dipodomyicola, Penicillium expansum, Penicillium gladioli, Penicillium glandicola, Penicillium griseofulvum, Penicillium paneum, Penicillium sclerotigenum and Penicillium vulpinum were compared. Primer pairs for DNA amplification and sequencing were designed from the P. griseofulvum idh gene (GenBank AF006680). The two introns present were removed from the nucleotide sequences, which were translated to produce the IDH sequences of the 12 species for comparison. Phylogenetic relationships among the species were determined from rDNA (ITS1, 5.8 S, ITS2 and partial sequence of 28S rDNA) and from the idh nucleotide sequences minus the two introns. Maximum parsimony analysis showed trees based on rDNA and idh sequences to be congruent. It is anticipated that the genetic information obtained in the present study will aid in the design of probes, specific for patulin biosynthetic pathway genes, to identify the presence of these mycotoxigenic fungi. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

6.
The patulin biosynthesis is one of model pathways in an understanding of secondary metabolite biology and network novelties in fungi. However, molecular regulation mechanism of patulin biosynthesis and contribution of each gene related to the different catalytic enzymes in the biochemical steps of the pathway remain largely unknown in fungi. In this study, the genetic components of patulin biosynthetic pathway were systematically dissected in Penicillium expansum, which is an important fungal pathogen and patulin producer in harvested fruits and vegetables. Our results revealed that all the 15 genes in the cluster are involved in patulin biosynthesis. Proteins encoded by those genes are compartmentalized in various subcellular locations, including cytosol, nucleus, vacuole, endoplasmic reticulum, plasma membrane and cell wall. The subcellular localizations of some proteins, such as PatE and PatH, are required for the patulin production. Further, the functions of eight enzymes in the 10-step patulin biosynthetic pathway were verified in P. expansum. Moreover, velvet family proteins, VeA, VelB and VelC, were proved to be involved in the regulation of patulin biosynthesis, but not VosA. These findings provide a thorough understanding of the biosynthesis pathway, spatial control and regulation mechanism of patulin in fungi.  相似文献   

7.
8.
9.
Aspergillus flavus, A. niger, Penicillium expansum and Rhizopus stolonifer were the most frequently isolated fungi from healthy apple fruits. Alternaria alternata was the most common organism of rotten apple fruits, followed by A. niger, A. flavus, P. expansum and R. stolonifer. The prevalent type of decay, brown rot lesion, is caused by R. stolonifer followed by A. flavus, A. niger, A. alternata and P. expansum. Sodium hypochlorite had good curative properties against fruit rots. The main natural mycotoxins produced in rotten apple were patulin and aflatoxins. The optimum temperature for patulin production by P. expansum was 15 °C after 15 days. Complete inhibition of patulin formation was attained using 0.2% lemon oil and > 90% inhibition using 0.05% lemon and 0.2% orange oils. Also significant inhibition (> 90%) of aflatoxin production was observed with 0.2% lemon oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Despite the availability of genome data and recent advances in methionine regulation in Corynebacterium glutamicum, sulfur metabolism and its underlying molecular mechanisms are still poorly characterized in this organism. Here, we describe the identification of an ORF coding for a putative regulatory protein that controls the expression of genes involved in sulfur reduction dependent on extracellular methionine levels. C. glutamicum was randomly mutagenized by transposon mutagenesis and 7,000 mutants were screened for rapid growth on agar plates containing the methionine antimetabolite d,l-ethionine. In all obtained mutants, the site of insertion was located in the ORF NCgl2640 of unknown function that has several homologues in other bacteria. All mutants exhibited similar ethionine resistance and this phenotype could be transferred to another strain by the defined deletion of the NCgl2640 gene. Moreover, inactivation of NCgl2640 resulted in significantly increased methionine production. Using promoter lacZ-fusions of genes involved in sulfur metabolism, we demonstrated the relief of l-methionine repression in the NCgl2640 mutant for cysteine synthase, o-acetylhomoserine sulfhydrolase (metY) and sulfite reductase. Complementation of the mutant strain with plasmid-borne NCgl2640 restored the wild-type phenotype for metY and sulfite reductase.  相似文献   

11.
Sulfur metabolism in Cephalosporium acremonium was investigated using a mutant, 8650+/ OAH?/SeMeR, which could not convert cysteine or inorganic sulfur to methionine. The production of cephalosporin by the mutant depended on the amount of S-sulfocysteine in a chemically defined medium supplemented with a low level of methionine sufficient to support optimal growth. S-Sulfocysteine was detected in an extract of cells grown in the presence of sodium thiosulfate and l-serine. Furthermore, an NADPH-linked reduction of S-sulfocysteine to cysteine was demonstrated in a cell-free extract. These facts suggest that S-sulfocysteine is a direct precursor in cysteine biosynthesis in C. acremonium and an alternative pathway involving the compound is one of the most important ones in cephalosporin C production by this fungus.  相似文献   

12.
《Mycological Research》2006,110(9):1111-1118
Nucleotide sequences of the isoepoxydon dehydrogenase gene (idh) for eight strains of Byssochlamys nivea were determined by constructing GenomeWalker libraries. A striking finding was that all eight strains of B. nivea examined had identical nucleotide sequences, including those of the two introns present. The length of intron 2 was nearly three times the size of introns in strains of Penicillium expansum and P. griseofulvum, but intron 1 was comparable in size to the number of nucleotides present in introns 1 and 2 of P. expansum and P. griseofulvum. A high degree of amino acid homology (88 %) existed for the idh genes of the strains of B. nivea when compared with sequences of P. expansum and P. griseofulvum. There were many nucleotide differences present, but they did not affect the amino acid sequence because they were present in the third position. The identity of the B. nivea isolates was confirmed by sequencing the ITS/partial LSU (28 S) rDNA genes. Four B. nivea strains were analysed for production of patulin, a mycotoxin found primarily in apple juice and other fruit products. The B. nivea strains produced patulin in amounts comparable to P. expansum strains. Interest in the genus Byssochlamys is related to the ability of its ascospores to survive pasteurization and cause spoilage of heat-processed fruit products worldwide.  相似文献   

13.
A morpholinepropanesulfonic acid (MOPS)-buffered rich defined medium (RDM) was optimized to support a reproducible 2.6-h doubling time at 35 °C for Deinococcus radiodurans R1 and used to gain insight into vitamin and carbon metabolism. D. radiodurans was shown to require biotin and niacin for growth in this medium. A glutamine–serine simple defined medium (SDM) was developed that supported a 4-h doubling time, and this medium was used to probe sulfur and methionine metabolism. Vitamin B12 was shown to alleviate methionine auxotrophy, and under these conditions, sulfate was used as the sole sulfur source. Phenotypic characterization of a methionine synthase deletion mutant demonstrated that the B12 alleviation of methionine auxotrophy was due to the necessity of the B12-dependent methionine synthase in methionine biosynthesis. Growth on ammonium as the sole nitrogen source in the presence of vitamin B12 was demonstrated, but it was not possible to achieve reproducibly good growth in the absence of at least one amino acid as a nitrogen source. Growth on sulfate, cysteine, and methionine as sulfur sources demonstrated the function of a complete sulfur recycling pathway in this strain. These studies have demonstrated that rapid growth of D. radiodurans R1 can be achieved in a MOPS-based medium solely containing a carbon source, salts, four vitamins, and two amino acids.  相似文献   

14.
15.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   

16.
In this study, we investigated the pathogenicity and patulin production by ten strains of Penicillium expansum on various fruits (apples, apricots, kiwis, plums and peaches) at two (4°C and 25°C) different temperature regimes. All strains caused the infectious rots on all fruits at 4 and 25°C except one strain (PEX 09) at 4°C. Two strains (PEX 20 and PEX 12) out of ten produced the highest amounts of patulin on all fruits tested. The patulin production by P. expansum is high at 25°C compared to 4°C. All strains of P. expansum accumulated patulin ranging from 100–13,200 μg/kg and nine strains ranging from 100–12,100 μg/kg in all fruits at 25°C and 4°C, respectively. Among ten strains of P. expansum, strain PEX 20 produced the greatest amount of patulin on apricots (13,200 μg/kg of rotten fruit) and on apples (12,500 μg/kg) at 25°C after 9 days of incubation. At 4°C, this strain produced 12,100, 12,000, 2,100 and 1,200 μg/kg of patulin on apricots, apples, plums and peaches, respectively, after 45 days of incubation. Strain PEX 12 produced the highest amount of patulin on kiwis (10,700 μg/kg) at 25°C and 10,300 μg/kg at 4°C. Patulin production by P. expansum on peaches and plums at both temperatures were lower than other fruits. The results of this study showed that careful removal of rotten fruits is essential to produce patulin-free fruit juice, since high patulin levels in apricots, apples and kiwis could result in a level greater than 50 μg/kg of this mycotoxin in finished fruit juices, when one contaminated fruit occurs in 264, 250 and 214 fruits, respectively. So, the fruit processors should take care in not using rotten fruits for juice production to avoid the patulin problem worldwide, since this study proved that most important fruits being used for juice production and direct human consumption are susceptible to P. expansum and subsequent patulin production even at low temperatures. This is the first comprehensive report regarding patulin production by different strains of P. expansum on various fruits from Italy at different temperature regimes.  相似文献   

17.
Purified DNA from isolates of Penicillium griseofulvum and P. expansum was used as a template to amplify a 600-bp fragment of the isoepoxydon dehydrogenase (idh) gene of the patulin biosynthetic pathway. Primer pairs designed from the P. griseofulvum gene (GenBank accession AF006680) to amplify specific regions of the idh gene yielded similar-sized bands for all strains. Asymmetrical amplification produced DNA products for sequencing and DNA sequences were translated to produce the corresponding amino acid sequences. After removal of two introns present in the region sequenced, amino acid sequences were compared. There were 12 amino acid differences between P. expansum and P. griseofulvum in the coding region. The differences correlated with the amount of patulin previously produced in culture, with strains of P. griseofulvum producing the greatest amounts of patulin.  相似文献   

18.
【目的】探究丙酮丁醇梭菌半胱氨酸合成代谢途径上铁氧还蛋白和胱硫醚-γ-裂解酶基因的功能。【方法】使用ClosTron系统对半胱氨酸合成途径上的铁氧还蛋白基因(fer)和胱硫醚-γ-裂解酶基因(mccB)进行失活,得到突变株;在不同硫源的培养基中进行分批发酵,分析突变株的生长特点;通过pH控制,使用限磷的连续发酵方法将丙酮丁醇梭菌维持在产酸期和产溶剂期,分析野生型菌株和突变株在连续发酵中的生长情况。【结果】成功构建Δfer和ΔmccB突变株。在分批发酵中,敲除fer基因的突变株无法利用硫酸盐作为硫源,但添加亚硫酸盐或半胱氨酸可以使其恢复生长;在以半胱氨酸为唯一硫源进行分批发酵时,其终浓度1 mmol/L时不会影响野生型与Δfer突变株的生长,但高于1 mmol/L时生长均会受到抑制。在连续发酵中,Δfer突变株不能在产溶剂阶段生长,添加过量的半胱氨酸也不能恢复生长;敲除mccB基因的突变株仍能在添加甲硫氨酸的培养基中生长,但最大OD仅为野生型的57%;相较于野生型,ΔmccB突变株在产酸期和产溶剂期的生长均受到抑制。【结论】fer基因为半胱氨酸合成途径中硫酸盐还原为亚硫酸盐的关键基因,其控制合成的半胱氨酸不能完全由外源的半胱氨酸替代,敲除后对生长的抑制主要表现在连续发酵中的产溶剂阶段。mccB基因参与调控甲硫氨酸转化为半胱氨酸的过程,其敲除会影响甲硫氨酸到半胱氨酸的转化,但不会阻断该生物反应过程。  相似文献   

19.
Synthesis of the sulfur amino acids: cysteine and methionine   总被引:2,自引:0,他引:2  
This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号