首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants quickly accumulate reactive oxygen species (ROS) to resist against pathogen invasion, while pathogens strive to escape host immune surveillance by degrading ROS. However, the nature of the strategies that fungal pathogens adopt to counteract host-derived oxidative stress is manifold and requires deep investigation. In this study, a superoxide dismutase (SOD) from Puccinia striiformis f. sp. tritici (Pst) PsSOD2 with a signal peptide (SP) and the glycophosphatidyl inositol (GPI) anchor, strongly induced during infection, was analysed for its biological characteristics and potential role in wheat–Pst interactions. The results showed that PsSOD2 encodes a Cu-only SOD and responded to ROS treatment. Heterologous complementation assays in Saccharomyces cerevisiae suggest that the SP of PsSOD2 is functional for its secretion. Transient expression in Nicotiana benthamiana leaves revealed that PsSOD2 is localized to the plasma membrane. In addition, knockdown of PsSOD2 by host-induced gene silencing reduced Pst virulence and resulted in restricted hyphal development and increased ROS accumulation. In contrast, heterologous transient assays of PsSOD2 suppressed flg22-elicited ROS production. Taken together, our data indicate that PsSOD2, as a virulence factor, was induced and localized to the plasma membrane where it may function to scavenge host-derived ROS for promoting fungal infection.  相似文献   

2.
Aspergillus fumigatus is an important pathogen of the immunocompromised host. Previously, it was shown that the polyketide synthase encoded by the pksP (alb1) gene represents a virulence determinant. pksP is part of a gene cluster involved in dihydroxynaphthalene (DHN)-like melanin biosynthesis. Because a putative laccase-encoding gene (abr2) is also part of the cluster and a laccase was found to represent a virulence factor in Cryptococcus neoformans, here, the Abr2 laccase was characterised. Deletion of the abr2 gene changed the gray-green conidial pigment to a brown color and the ornamentation of conidia was reduced compared with wild-type conidia. In contrast to the white pksP mutant, the susceptibility of the Δabr2 mutant against reactive oxygen species (ROS) was not increased, suggesting that the intermediate of DHN-like melanin produced up to the step catalysed by Abr2 already possesses ROS scavenging activity. In an intranasal mouse infection model, the Δabr2 mutant strain showed no reduction in virulence compared with the wild type. In the Δabr2 mutant, overall laccase activity was reduced only during sporulation, but not during vegetative growth. An abr2p-lacZ gene fusion was expressed during sporulation, but not during vegetative growth confirming the pattern of laccase activity due to Abr2.  相似文献   

3.
Metarhizium robertsii is a plant root colonizing fungus that is also an insect pathogen. Its entomopathogenicity is a characteristic that was acquired during evolution from a plant endophyte ancestor. This transition provides a novel perspective on how new functional mechanisms important for host switching and virulence have evolved. From a random T-DNA insertion library, we obtained a pathogenicity defective mutant that resulted from the disruption of a sterol carrier gene (Mr-npc2a). Phylogenetic analysis revealed that Metarhizium acquired Mr-npc2a from an insect by horizontal gene transfer (HGT). Mr-NPC2a binds to cholesterol, an animal sterol, rather than the fungal sterol ergosterol, indicating it retains the specificity of insect NPC2 proteins. Mr-NPC2a is an intracellular protein and is exclusively expressed in the hemolymph of living insects. The disruption of Mr-npc2a reduced the amount of sterol in cell membranes of the yeast-like hyphal bodies that facilitate dispersal in the host body. These were consequently more susceptible to insect immune responses than the wild type. Transgenic expression of Mr-NPC2a increased the virulence of Beauveria bassiana, an endophytic insect-pathogenic fungus that lacks a Mr-NPC2a homolog.  相似文献   

4.
Studying fungal virulence is often challenging and frequently depends on many contexts, including host immune status and pathogen genetic background. However, the role of ploidy has often been overlooked when studying virulence in eukaryotic pathogens. Since fungal pathogens, including the human opportunistic pathogen Candida albicans, can display extensive ploidy variation, assessing how ploidy impacts virulence has important clinical relevance. As an opportunistic pathogen, C. albicans causes nonlethal, superficial infections in healthy individuals, but life‐threatening bloodstream infections in individuals with compromised immune function. Here, we determined how both ploidy and genetic background of C. albicans impacts virulence phenotypes in healthy and immunocompromised nematode hosts by characterizing virulence phenotypes in four near‐isogenic diploid and tetraploid pairs of strains, which included both laboratory and clinical genetic backgrounds. We found that C. albicans infections decreased host survival and negatively impacted host reproduction, and we leveraged these two measures to survey both lethal and nonlethal virulence phenotypes across the multiple C. albicans strains. In this study, we found that regardless of pathogen ploidy or genetic background, immunocompromised hosts were susceptible to fungal infection compared to healthy hosts. Furthermore, for each host context, we found a significant interaction between C. albicans genetic background and ploidy on virulence phenotypes, but no global differences between diploid and tetraploid pathogens were observed.  相似文献   

5.
Host plant chemical composition critically shapes the performance of insect herbivores feeding on them. Some insects have become specialized on plant secondary metabolites, and even use them to their own advantage such as defense against predators. However, infection by plant pathogens can seriously alter the interaction between herbivores and their host plants. We tested whether the effects of the plant secondary metabolites, iridoid glycosides (IGs), on the performance and immune response of an insect herbivore are modulated by a plant pathogen. We used the IG‐specialized Glanville fritillary butterfly Melitaea cinxia, its host plant Plantago lanceolata, and the naturally occurring plant pathogen, powdery mildew Podosphaera plantaginis, as model system. Pre‐diapause larvae were fed on P. lanceolata host plants selected to contain either high or low IGs, in the presence or absence of powdery mildew. Larval performance was measured by growth rate, survival until diapause, and by investment in immunity. We assessed immunity after a bacterial challenge in terms of phenoloxidase (PO) activity and the expression of seven pre‐selected insect immune genes (qPCR). We found that the beneficial effects of constitutive leaf IGs, that improved larval growth, were significantly reduced by mildew infection. Moreover, mildew presence downregulated one component of larval immune response (PO activity), suggesting a physiological cost of investment in immunity under suboptimal conditions. Yet, feeding on mildew‐infected leaves caused an upregulation of two immune genes, lysozyme and prophenoloxidase. Our findings indicate that a plant pathogen can significantly modulate the effects of secondary metabolites on the growth of an insect herbivore. Furthermore, we show that a plant pathogen can induce contrasting effects on insect immune function. We suspect that the activation of the immune system toward a plant pathogen infection may be maladaptive, but the actual infectivity on the larvae should be tested.  相似文献   

6.
The slow lethality of fungal biopesticides to insects restrains their widespread application as a strategy of pest control. In this study, unary, binary and ternary transgenic Metarhizium robertsii were created by integrating genes that encode the scorpion neurotoxin BjαIT, the cuticle-degrading protease Pr1A, and a double-stranded RNA (dsRNA) that targets host gnbp3, individually or collectively under a constitutive promoter to enhance virulence. Compared with the parental wild type, all unary transgenic strains had increased virulence against four insect species, Tenebrio molitor, Locusta migratoria, Plutella xylostella and Galleria mellonella, whereas the binary transgenic strain expressing both pr1A and BjαIT had increased virulence to T. molitor and L. migratoria, with no change in virulence against P. xylostella and G. mellonella. Importantly, all ternary transgenic strains simultaneously expressing pr1A, BjαIT, and the dsRNA specific to host gnbp3 exhibited the highest increase in insect-specific virulence. This finding highlights a novel strategy for genetic engineering of dsRNAs that target genes associated with the host immune response alongside virulence genes to maximize fungal virulence and lethality against insect pests.  相似文献   

7.
8.
In order to study fungal pathogen evolution, we used a model system whereby the opportunistic fungus Aspergillus flavus was serially propagated through the insect (Galleria mellonella) larvae, yielding a cysteine/methionine auxotroph of A. flavus with properties of an obligate insect pathogen. The auxotroph exhibited insect host restriction but did not show any difference in virulence when compared with the wild-type (Scully LR, Bidochka MJ, 2006. Microbiology 152, 223-232). Here, we report that on 1 % insect cuticle medium and synthetic Galleria medium, the auxotroph displayed increased extracellular protease production, a virulence factor necessary for insect pathogenesis. In the wild-type strain, protease production was deregulated during carbon (glucose), nitrogen (nitrate), or sulphate deprivation. If all three were present, protease production was vastly reduced. However, in the cysteine/methionine auxotroph, protease production was deregulated in complete medium. We suggest that the deficiency in sulphate assimilation in the auxotroph resulted in deregulation of protease production. The auxotroph exhibited delayed germination and slower hyphal growth when compared to the wild-type but there were no differences in virulence or cuticle penetration, suggesting a shift in pathogenic strategy that compensated decreased growth with increased virulence factor (extracellular protease) production. We concluded that the biosynthetic deficiency that mediated insect host restriction also increased protease production in the slow-growing auxotroph, resulting in an alternate, more host-specific pathogenic strategy. However, we argue that transmission is not necessarily correlated with virulence as competition bioassays in insect larvae showed that the wild-type generally out-competed the auxotroph by producing the majority of the conidia on the sporulating cadavers. This is one of the few examples that highlight the effect of genome decay on nutrition acquisition, virulence, and transmission in fungal pathogen evolution.  相似文献   

9.
《Fungal biology》2021,125(8):596-608
Fungal dimorphism is the ability of certain fungi to switch between two different cellular forms, yeast and mycelial forms, in response to external environmental factors. The pacC/Pal signal transduction pathway responds to neutral and alkaline environments and is also involved in the fungal dimorphic transition. In this study, we investigated the function of the pacC homolog, MripacC, which regulates the dimorphic transition and modulates virulence of the insect pathogenic fungus Metarhizium rileyi. MripacC expression was upregulated under alkaline condition, with increased number of yeast-like cells compared to the number of hyphae cells. A MripacC deletion mutant (ΔMripacC) was obtained by homologous replacement and exhibited decreased blastospore budding, with direct development of conidia into hyphae without entering the yeast-like stage when cultured on alkaline medium. Observation of host hemolymph morphology and analysis of samples to detect the main immune factors revealed a decreased ability of ΔMripacC to evade the host immune system. The results of insect bioassays showed that ΔMripacC had decreased virulence with extended median lethality time. Together, the results suggested that MripacC not only regulated adaptation to acidic and alkaline environments, but also influenced virulence by budding blastospores. This elucidation of the function of MripacC adds to our understanding of blastospore budding and virulence of this fungal pathogen.  相似文献   

10.
Chitin is a major structural component of fungal cell walls and acts as a microbe-associated molecular pattern (MAMP) that, on recognition by a plant host, triggers the activation of immune responses. To avoid the activation of these responses, the Septoria tritici blotch (STB) pathogen of wheat, Zymoseptoria tritici, secretes LysM effector proteins. Previously, the LysM effectors Mg1LysM and Mg3LysM were shown to protect fungal hyphae against host chitinases. Furthermore, Mg3LysM, but not Mg1LysM, was shown to suppress chitin-induced reactive oxygen species (ROS) production. Whereas initially a third LysM effector gene was disregarded as a presumed pseudogene, we now provide functional data to show that this gene also encodes a LysM effector, named Mgx1LysM, that is functional during wheat colonization. While Mg3LysM confers a major contribution to Z. tritici virulence, Mgx1LysM and Mg1LysM contribute to Z. tritici virulence with smaller effects. All three LysM effectors display partial functional redundancy. We furthermore demonstrate that Mgx1LysM binds chitin, suppresses the chitin-induced ROS burst, and is able to protect fungal hyphae against chitinase hydrolysis. Finally, we demonstrate that Mgx1LysM is able to undergo chitin-induced polymerization. Collectively, our data show that Z. tritici utilizes three LysM effectors to disarm chitin-triggered wheat immunity.  相似文献   

11.
The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations.  相似文献   

12.
13.
The cotton aphid is one of the most serious pests of greenhouse vegetable crops worldwide. It is difficult to control because field populations usually include simultaneously several insect developmental stages. The current research evaluated an isolate (CS625) of Lecanicillium attenuatum, a fungal pathogen of aphids, as to its virulence against different developmental stages of cotton aphid, Aphis gossypii. The influence on mortality of several other factors also was examined: (a) insect moulting, (b) the number of conidia attached to insect cuticles and (c) germination rates of conidia on cuticles of aphids at various developmental stages. Mortality of cotton aphids treated with L. attenuatum conidia varied according to the developmental stage of the host, i.e. the LT50s with third-instar nymphs and adults was shorter than with first-instar nymphs. The number of spores attached to the surface of first-instar nymphs was approximately one-half of that on third-instar nymphs and adults. Also, the level of spore germination on the surface of first-instar nymphs was lower than on the surface of other stages of the aphid. After moulting, the numbers of conidia attached to new insect cuticles were less than on exuviae. These results suggest that early nymphal stages of cotton aphids may escape fungal disease due, at least in part, to a combination of three factors: low numbers of conidia attached to their cuticles; low levels of conidial germination and rapid ecdyses, which removed conidia before their germ tubes penetrated the host hemolymph.  相似文献   

14.
The filamentous fungus Beauveria bassiana is a natural pathogen of the greater wax moth Galleria mellonella. Infection with this fungus triggered systemic immune response in G. mellonella; nevertheless, the infection was lethal if spores entered the insect hemocel. We observed melanin deposition in the insect cuticle and walls of air bags, while the invading fungus interrupted tissue continuity. We have shown colonization of muscles, air bags, and finally colonization and complete destruction of the fat body—the main organ responsible for the synthesis of defense molecules in response to infection. This destruction was probably not caused by simple fungal growth, because the fat body was not destroyed during colonization with a human opportunistic pathogen Candida albicans. This may mean that the infecting fungus is able to destroy actively the insect's fat body as part of its virulence mechanism. Finally, we were unable to reduce the extremely high virulence of B. bassiana against G. mellonella by priming of larvae with thermally inactivated fungal spores.  相似文献   

15.
Mitogen‐activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross‐talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross‐kingdom pathogen F. oxysporum.  相似文献   

16.
17.
Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed “aspergilloses,” in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host–pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients’ lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host–pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.

This study reveals that the post-translational modification persulfidation is important for both fungal virulence and the host antifungal response. The level of persulfidation in the host, which correlates with its antifungal potency, impacts the level required in the fungus to counteract host attack, reflecting a functional correlation. Thus modulating persulfidation may be a promising strategy to target both pathogens and immune responses.  相似文献   

18.
Salmonella is a facultative intracellular pathogen that has co-evolved with its host and has also developed various strategies to evade the host immune responses. Salmonella recruits an array of virulence factors to escape from host defense mechanisms. Previously chitinase A (chiA) was found to be upregulated in intracellular Salmonella. Although studies show that several structurally similar chitinases and chitin-binding proteins (CBP) of many human pathogens have a profound role in various aspects of pathogenesis, like adhesion, virulence, and immune evasion, the role of chitinase in the intravacuolar pathogen Salmonella has not yet been elucidated. Therefore, we made chromosomal deletions of the chitinase encoding gene (chiA) to study the role of chitinase of Salmonella enterica in the pathogenesis of the serovars, Typhimurium, and Typhi using in vitro cell culture model and two different in vivo hosts. Our data indicate that ChiA removes the terminal sialic acid moiety from the host cell surface, and facilitates the invasion of the pathogen into the epithelial cells. Interestingly we found that the mutant bacteria also quit the Salmonella-containing vacuole and hyper-proliferate in the cytoplasm of the epithelial cells. Further, we found that ChiA aids in reactive nitrogen species (RNS) and reactive oxygen species (ROS) production in the phagocytes, leading to MHCII downregulation followed by suppression of antigen presentation and antibacterial responses. Notably, in the murine host, the mutant shows compromised virulence, leading to immune activation and pathogen clearance. In continuation of the study in C. elegans, Salmonella Typhi ChiA was found to facilitate bacterial attachment to the intestinal epithelium, intestinal colonization, and persistence by downregulating antimicrobial peptides. This study provides new insights on chitinase as an important and novel virulence determinant that helps in immune evasion and increased pathogenesis of Salmonella.  相似文献   

19.
20.
Abstract Virulence is thought to be a driving force in host–pathogen coevolution. Theoretical models suggest that virulence is an unavoidable consequence of pathogens evolving towards a high rate of intrahost reproduction. These models predict a positive correlation between the reproductive fitness of a pathogen and its level of virulence. Theoretical models also suggest that the demography and genetic structure of a host population can influence the evolution of virulence. If evolution occurs faster in pathogen populations than in host populations, the predicted result is local adaptation of the pathogen population. In our studies, we used a combination of molecular and physiological markers to test these hypotheses in an agricultural system. We isolated five strains of the fungal pathogen Mycosphaerella graminicola from each of two wheat cultivars that differed in their level of resistance to this pathogen. Each of the 10 fungal strains had distinct genotypes as indicated by different DNA fingerprints. These fungal strains were re‐inoculated onto the same two host cultivars in a field experiment and their genotype frequencies were monitored over several generations of asexual reproduction. We also measured the virulence of these 10 fungal strains and correlated it to the reproductive fitness of each fungal strain. We found that host genotypes had a strong impact on the dynamics of the pathogen populations. The pathogen population collected from the moderately resistant cultivar Madsen showed greater stability, higher genotype diversity, and smaller selection coefficients than the pathogen populations collected from the susceptible cultivar Stephens or a mixture of the two host cultivars. The pathogen collection from the mixed host population was midway between the two pure lines for most parameters measured. Our results also revealed that the measures of reproductive fitness and virulence of a pathogen strain were not always correlated. The pathogen strains varied in their patterns of local adaptation, ranging from locally adapted to locally maladapted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号