首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase-2 (COX-2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX-2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX-2 overexpression by COX-2-dependent PGE2-EP2-ERK1/2-NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX-2-independent LKB1-AMPK-NRF2-HO-1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX-2-dependent and COX-2-independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.  相似文献   

2.
Selective inhibitors of cyclooxygenase-2 (COX-2), such as rofecoxib (Vioxx), celecoxib (Celebrex), and valdecoxib (Bextra), have been developed for treating arthritis and other musculoskeletal complaints. Selective inhibition of COX-2 over COX-1 results in preferential decrease in prostacyclin production over thromboxane A2 production, thus leading to less gastric effects than those seen with nonselective COX inhibitors such as acetylsalicylic acid (aspirin). Here we show a novel effect of celecoxib via a mechanism that is independent of COX-2 inhibition. The drug inhibited the delayed rectifier (Kv2) potassium channels from Drosophila, rats, and humans and led to pronounced arrhythmia in Drosophila heart and arrhythmic beating of rat heart cells in culture. These effects occurred despite the genomic absence of cyclooxygenases in Drosophila and the failure of acetylsalicylic acid, a potent inhibitor of both COX-1 and COX-2, to inhibit rat Kv2.1 channels. A genetically null mutant of Drosophila Shab (Kv2) channels reproduced the cardiac effect of celecoxib, and the drug was unable to further enhance the effect of the mutation. These observations reveal an unanticipated effect of celecoxib on Drosophila hearts and on heart cells from rats, implicating the inhibition of Kv2 channels as the mechanism underlying this effect.  相似文献   

3.
Beta-phenylethyl (PEITC) and 8-methylsulphinyloctyl isothiocyanates (MSO) represent two phytochemical constituents present in watercress Rorripa nasturtium aquaticum, with known chemopreventative properties. In the present investigation, we examined whether PEITC and MSO could modulate the inflammatory response of Raw 264.7 macrophages to bacterial lipopolysaccharide (LPS) by assessment of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Overproduction of both nitric oxide (NO) and prostaglandins (PGE) has been associated with numerous pathological conditions including chronic inflammation and cancer. Our results demonstrate that LPS (1 microg/ml approximately 24 h) induced nitrite and prostaglandin E2 (PGE-2) synthesis in Raw 264.7 cells was attenuated by both isothiocyanates (ITCs) in a concentration-dependent manner. Both PEITC and MSO decreased (iNOS) and (COX-2) protein expression levels leading to reduced secretion of both pro-inflammatory mediators. Interestingly, the reduction in both iNOS and COX-2 expression were associated with the inactivation of nuclear factor-kappaB and stabilization of IkappaBalpha. Taken together our data gives further insight into the possible chemopreventative properties of two dietary derived isothiocyanates from watercress.  相似文献   

4.
Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents; however, they also have adverse fetal effects such as constriction of the fetal ductus arteriosus. Recently, selective COX-2 inhibitors have been used in the management of preterm labor in the hope of avoiding fetal complications. However, both COX-1 and -2 are expressed by cells of the ductus arteriosus. We used fetal lambs (0.88 gestation) to assess the ability of selective COX-2 inhibitors celecoxib and NS398 to affect the ductus arteriosus. Both selective COX-2 inhibitors decreased PGE(2) and 6ketoPGF(1alpha) production in vitro; both inhibitors constricted the isolated ductus in vitro. The nonselective COX-1/COX-2 inhibitor indomethacin produced a further reduction in PG release and an additional increase in ductus tension in vitro. We used a prodrug of celecoxib to achieve 1.4 +/- 0.6 microg/ml, mean +/- standard deviation, of the active drug in vivo. This concentration of celecoxib produced both an increase in pressure gradient and resistance across the ductus; celecoxib also decreased fetal plasma concentrations of PGE(2) and 6ketoPGF(1alpha). Indomethacin (0.7 +/- 0.2 microg/ml) produced a significantly greater fall in ductus blood flow than celecoxib and tended to have a greater effect on ductus resistence in vivo. We conclude that caution should be used when recommending COX-2 inhibitors for use in pregnant women, because COX-2 appears to play a significant role in maintaining patency of the fetal ductus arteriosus.  相似文献   

5.

Introduction  

Celecoxib, a highly specific cyclooxygenase-2 (COX-2) inhibitor has been reported to have COX-2-independent immunomodulatory effects. However, celecoxib itself has only mild suppressive effects on arthritis. Recently, we reported that a 4-trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2-inhibitory activity inhibits secretion of IL-12 family cytokines through a COX-2-independent mechanism that involves Ca2+-mediated intracellular retention of the IL-12 polypeptide chains. In this study, we explored the capacity of TFM-C as a new therapeutic agent for arthritis.  相似文献   

6.
Nociception evoked prostaglandin (PG) release in the spinal cord considerably contributes to the induction of hyperalgesia and allodynia. To evaluate the relative contribution of cyclooxygenase-1 (COX-1) and COX-2 in this process we assessed the effects of the selective COX-1 inhibitor SC560 and the selective COX-2 inhibitor celecoxib on formalin-evoked nociceptive behaviour and spinal PGE(2) release. SC560 (10 and 20 mg/kg) significantly reduced the nociceptive response and completely abolished the formalin-evoked PGE(2) raise. In contrast, celecoxib (10 and 20 mg/kg) was ineffective in both regards, i.e. the flinching behaviour was largely unaltered and the formalin-induced PGE(2) raise as assessed using microdialysis was only slightly, not significantly reduced. This suggests that the formalin-evoked rapid PG release was primarily caused by COX-1 and was independent of COX-2. Mean free spinal cord concentrations of celecoxib during the formalin assay were 32.0 +/- 4.5 nM, thus considerably higher than the reported IC50 for COX-2 (3-7 nM). Therefore, the lack of efficacy of celecoxib is most likely not to be a result of poor tissue distribution. COX-2 mRNA and protein expression in the spinal cord were not affected by microdialysis alone but the mRNA rapidly increased following formalin injection and reached a maximum at 2 h. COX-2 protein was unaltered up to 4 h after formalin injection. The time course of COX-2 up-regulation suggests that the formalin-induced nociceptive response precedes COX-2 protein de novo synthesis and may therefore be unresponsive to COX-2 inhibition. Considering the results obtained with the formalin model it may be hypothesized that the efficacy of celecoxib in early injury evoked pain may be less than that of unselective NSAIDs.  相似文献   

7.
Ching TT  Chiang WC  Chen CS  Hsu AL 《Aging cell》2011,10(3):506-519
One goal of aging research is to develop interventions that combat age-related illnesses and slow aging. Although numerous mutations have been shown to achieve this in various model organisms, only a handful of chemicals have been identified to slow aging. Here, we report that celecoxib, a nonsteroidal anti-inflammatory drug widely used to treat pain and inflammation, extends Caenorhabditis elegans lifespan and delays the age-associated physiological changes, such as motor activity decline. Celecoxib also delays the progression of age-related proteotoxicity as well as tumor growth in C. elegans. Celecoxib was originally developed as a potent cyclooxygenase-2 (COX-2) inhibitor. However, the result from a structural-activity analysis demonstrated that the antiaging effect of celecoxib might be independent of its COX-2 inhibitory activity, as analogs of celecoxib that lack COX-2 inhibitory activity produce a similar effect on lifespan. Furthermore, we found that celecoxib acts directly on 3'-phosphoinositide-dependent kinase-1, a component of the insulin/IGF-1 signaling cascade to increase lifespan.  相似文献   

8.
The peripheral antinociceptive effect of the selective COX-2 inhibitor celecoxib in the formalin-induced inflammatory pain was compared with that of resveratrol (COX-1 inhibitor) and diclofenac (non-selective COX inhibitor). Rats received local pretreatment with saline, celecoxib, diclofenac or resveratrol followed by 50 microl of either 1% or 5% formalin. Peripheral administration of celecoxib did not produce antinociception at either formalin concentration. In contrast, diclofenac and resveratrol produced a dose-dependent antinociceptive effect in the second phase of both 1% and 5% formalin test. The peripheral antinociception produced by diclofenac or resveratrol was due to a local action, as drug administration in the contralateral paw was ineffective. Results indicate that the selective COX-2 inhibitor celecoxib does not produce peripheral antinociception in formalin-induced inflammatory pain. In contrast, selective COX-1 and non-selective COX inhibitors (resveratrol and diclofenac, respectively) are effective drugs in this model of pain.  相似文献   

9.
Peng H  Chen P  Cai Y  Chen Y  Wu QH  Li Y  Zhou R  Fang X 《Peptides》2008,29(3):419-424
Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.  相似文献   

10.
Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells.  相似文献   

11.
A new type of 1-aryl-5-(4-methylsulfonylphenyl)imidazoles, possessing C-2 alkylthio (SMe or SEt) substituents, were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 1-(4-bromophenyl)-5-(4-methylsulfonylphenyl)-2-methylthioimidazole (11g), was the most potent and selective COX-2 inhibitor (COX-2 IC50=0.43 microM with no inhibition of COX-1 up to 25 microM) relative to the reference drug celecoxib (COX-2 IC50=0.21 microM with no inhibition of COX-1 up to 25 microM) and also showed very good anti-inflammatory activity compared to celecoxib in carrageenan-induced rat paw edema assay.  相似文献   

12.
The synthesis and structure activity relationships (SAR) of a series of novel selective COX-2 inhibitors are reported. The results show that some of the 1,3,4-triaryl-3-pyrrolin-2-ones 1 are more potent as COX-2 inhibitors than celecoxib, and that lactam Id has the same selectivity.  相似文献   

13.
In an attempt to prepare a new water-soluble, parenteral COX-2 inhibitor, rofecoxib (9) and celecoxib (13) analogues were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. In this experiment, respective SO(2)Me and SO(2)NH(2) hydrogen-bonding pharmacophores were replaced by a tetrazole ring. Molecular modeling (docking) studies showed that the tetrazole ring of these two analogues (9 and 13) was inserted deep into the secondary pocket of the human COX-2 binding site where it undergoes electrostatic interaction with Arg(513). The rofecoxib (9) and celecoxib (13) analogues exhibited a high in vitro selectivity (9, COX-1 IC(50) = 3.8 nM; COX-2 IC(50) = 1.8 nM; SI = 2.11; 13, COX-1 IC(50) = 4.1 nM; COX-2 IC(50) = 1.9 nM; SI = 2.16) relative to the reference drug celecoxib (COX-1 IC(50) = 3.7 nM; COX-2 IC(50) = .2 nM; SI=1.68) and also showed high aqueous solubility at pH higher than 7 and good anti-inflammatory activity in a carrageenan-induced rat paw edema assay. However, 9 and 13 had no significant damage on gastric mucosa.  相似文献   

14.
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone sclerosis, osteophyte formation, and synovial inflammation, causing substantial physical disability, impaired quality of life, and significant health care utilization. Traditionally, non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclooxygenase (COX)-2 inhibitors, have been used to treat pain and inflammation in OA. Besides its anti-inflammatory properties, evidence is accumulating that celecoxib, one of the selective COX-2 inhibitors, has additional disease-modifying effects. Celecoxib was shown to affect all structures involved in OA pathogenesis: cartilage, bone, and synovium. As well as COX-2 inhibition, evidence indicates that celecoxib also modulates COX-2-independent signal transduction pathways. These findings raise the question of whether celecoxib, and potentially other coxibs, is more than just an anti-inflammatory and analgesic drug. Can celecoxib be considered a disease-modifying osteoarthritic drug? In this review, these direct effects of celecoxib on cartilage, bone, and synoviocytes in OA treatment are discussed.  相似文献   

15.
Objective: There are controversial reports in conscious animals regarding the role of cyclooxygenase-2 in late preconditioning (LP). This study analyzed the effect of COX-2 involvement in non-preconditioned hearts (NP) and in mediation of LP protection against stunning in conscious sheep submitted to a prolonged reversible ischemia. Methods: Six groups were considered: NP: 12 min ischemia and 120 min reperfusion; LP consisting of six periods of 5 min-ischemia-5 min reperfusion 24 h before the 12 min ischemia; NP and LP with either the non-selective COX-1 and COX-2 inhibitor, aspirin (20 mg/kg), or the specific COX-2 inhibitor, celecoxib (3 mg/kg) before the 12 min ischemic period. Results: Mean postischemic wall thickening fraction (as % of preischemic values) improved from 49.6 ± 4.0% in NP to 72.5 ± 3.5% in LP (p < 0.01) and a similar protection was obtained with aspirin and celecoxib in NP hearts (p < 0.01). Neither aspirin nor celecoxib administration prior to the prolonged ischemia on day 2 abrogated LP improvement of postischemic dysfunction. Moreover, LP with aspirin improved the protective response (80.7 ± 2.6%) over that obtained with aspirin in NP hearts (66.6 ± 4.7%, p < 0.05). This effect was not obtained with celecoxib. Conclusions: Aspirin and celecoxib showed that COX-2 has a detrimental effect on mechanical cardioprotection in NP hearts of conscious sheep submitted to a prolonged reversible ischemia, and does not seem to participate as mediator of LP. Aspirin revealed a similar COX-1 deleterious action, since only when both COX-1 and COX-2 were inhibited, LP was put in evidence adding functional improvement over that obtained in NP hearts treated with aspirin.  相似文献   

16.
This study investigates the apoptotic activity of the cyclooxygenase-2 (COX-2) inhibitor celecoxib in prostate carcinoma cells. COX-2 is constitutively expressed in androgen-responsive LNCaP and androgen-nonresponsive PC-3 cells. Exposure of these cells to celecoxib induces characteristic features of apoptosis, including morphological changes, DNA laddering, and caspase-3 activation, whereas piroxicam, a COX-1-specific inhibitor, displays no appreciable effect on either cancer cell line even after prolonged exposure. Moreover, the potency of celecoxib in apoptosis induction is significantly higher than that of other COX-2 inhibitors examined despite the observation that these inhibitors exhibit similar IC(50) in COX-2 inhibition. It is noteworthy that normal human prostate epithelial cells, expressing a marginally detectable level of COX-2, are insensitive to the induction of apoptosis by celecoxib. These data suggest a correlation between COX-2 expression and sensitivity to the apoptotic effect of the COX-2 inhibitor. In an effort to delineate the underlying mechanism, we examined the effect of celecoxib on the expression of Bcl-2 as well as the activation of the key anti-apoptotic kinase Akt. In contrast to an earlier report that attributed the apoptotic activity of NS398 in LNCaP cells to Bcl-2 down-regulation, we provide evidence that the induction of apoptosis by celecoxib in LNCaP and PC-3 cells is independent of Bcl-2. First, treatment with celecoxib does not alter the cellular Bcl-2 level in both cell lines. Second, enforced Bcl-2 expression in PC-3 cells does not confer protection against the induction of apoptosis by celecoxib. Our data show that celecoxib treatment blocks the phosphorylation of Akt. This correlation is supported by studies showing that overexpression of constitutively active Akt protects PC-3 cells from celecoxib-induced apoptosis. Nevertheless, how celecoxib down-regulates Akt is not clear because the drug does not adversely affect phosphoinositide 3-kinase activity in vivo and okadaic acid, a protein phosphatase 2A inhibitor, cannot rescue the inhibition. In summary, our data demonstrate that inhibition of Akt activation may play a crucial role in the induction of apoptosis by celecoxib.  相似文献   

17.

Background

We previously demonstrated that cyclooxygenase (COX)-1 deficiency results in greater morbidity and inflammation, whereas COX-2 deficiency leads to reduced morbidity, inflammation and mortality in influenza infected mice.

Methodology/Principal Findings

We investigated the effects of COX-1 and COX-2 inhibitors in influenza A viral infection. Mice were given a COX-1 inhibitor (SC-560), a COX-2 inhibitor (celecoxib) or no inhibitor beginning 2 weeks prior to influenza A viral infection (200 PFU) and throughout the course of the experiment. Body weight and temperature were measured daily as indicators of morbidity. Animals were sacrificed on days 1 and 4 post-infection and bronchoalveolar lavage (BAL) fluid was collected or daily mortality was recorded up to 2 weeks post-infection. Treatment with SC-560 significantly increased mortality and was associated with profound hypothermia and greater weight loss compared to celecoxib or control groups. On day 4 of infection, BAL fluid cells were modestly elevated in celecoxib treated mice compared to SC-560 or control groups. Viral titres were similar between treatment groups. Levels of TNF-α and G-CSF were significantly attenuated in the SC-560 and celecoxib groups versus control and IL-6 levels were significantly lower in BAL fluid of celecoxib treated mice versus control and versus the SC-560 group. The chemokine KC was significantly lower in SC-560 group versus control.

Conclusions/Significance

Treatment with a COX-1 inhibitor during influenza A viral infection is detrimental to the host whereas inhibition of COX-2 does not significantly modulate disease severity. COX-1 plays a critical role in controlling the thermoregulatory response to influenza A viral infection in mice.  相似文献   

18.
A new type of 4,5-diaryl-4H-1,2,4-triazole, possessing C-3 thio and alkylthio (SH, SMe or SEt) substituents, was designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 3-ethylthio-5-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-4H-1,2,4-triazole (10d), exhibited a high in vitro selectivity (COX-1 IC50=20.5 nM; COX-2 IC50=1.8 nM; SI=11.39) relative to the reference drug celecoxib (COX-1 IC50=3.7 nM; COX-2 IC50=2.2 nM; SI=1.68) and also showed good anti-inflammatory activity compared to celecoxib in a carrageenan-induced rat paw edema assay.  相似文献   

19.
Gastrin promotes gastric mucosal growth, and hypergastrinemia induces gastric mucosal hypertrophy. Recently, it has been reported that gastrin induces cyclooxygenase-2 (COX-2) in human gastric and colorectal cancer cell lines. However, whether COX-2 is involved in gastrin-induced gastric mucosal growth in vivo is unknown. We investigated the role of COX-2 in gastrin-induced gastric mucosal hypertrophy using gastrin transgenic mice. Hypergastrinemic mice [mice with mutated gastrin under the control of the beta-actin promoter (ACT-GAS mice)] received the COX-2 inhibitor celecoxib (0, 200, or 500 mg/kg of diet) from 5 wk of age and were killed at 16 or 24 wk. Some ACT-GAS mice received celecoxib from 16 wk and were killed at 24 wk. Eighty-week-old ACT-GAS mice without celecoxib treatment were also examined. The thickness of the gastric mucosa, cell populations, COX-2 expression, and PGE(2) levels were evaluated. All ACT-GAS mice showed gastric mucosal hypertrophy, and four of six 80-wk-old ACT-GAS mice developed gastric cancer. COX-2 was expressed in interstitial cells of the hypertrophic gastric mucosa and gastric cancers. Moreover, PGE(2) levels in the gastric mucosa of ACT-GAS mice were significantly higher than those of normal mice. With treatment with celecoxib, PGE(2) levels, the gastric mucosal thickness, and the number of total gastric cells per gastric gland of ACT-GAS mice were significantly decreased. The decrease in gastric mucosal thickness was caused by a reduction of foveolar hyperplasia. The thickness of glandules and the number of Ki67-positive cells were not significantly changed. In conclusion, COX-2 contributes to gastrin-induced mucosal hypertrophy of the stomach.  相似文献   

20.
Abstract

Celecoxib is a clinically available COX-2 inhibitor that has been reported to have antineoplastic activity. It has been proposed as a preventative agent for several types of early neoplastic lesions. Earlier studies have shown that sensitivity of prostatic carcinoma (PCa) to celecoxib is associated with apoptosis; however, these studies have not demonstrated adequately whether this effect is dependent on p53 status. We studied the relation between sensitivity to celecoxib and the phenotypic p53 status of PCa cells lines, LNCaP (wild type p53), PC3 (null p53) and DU145 (mutated p53). Cellular growth was assessed at 24, 48, 72 and 96 h after celecoxib treatment at concentrations of 0, 10, 30, 50, 70 and 100 μM using an MTT assay. Cellular proliferation (Ki-67 expression) was determined by immunocytochemistry. Phenotypic expression of p53 was analyzed by western blotting. The effects of celecoxib on cellular growth and its association with p53 were assessed after down-regulation of p53 using synthetic interfering RNAs (siRNA) in LNCaP cells. Expression of p53 and COX-2 at mRNA levels was assessed by quantitative real time polymerase reaction (qRT-PCR). We found that celecoxib inhibited cellular growth and proliferation in a dose-dependent manner in all three cell lines; LNCaP cells with a native p53 were the most sensitive to celecoxib. We observed a down- regulation effect on p53 in LNCaP cells exposed to ≥ 30 μM celecoxib for 72 h, but found no significant changes in the p53 levels of DU145 cells, which have a mutated p53. Reduced COX-2 expression was found with decreased p53 in LNCaP and PC-3 cells that were exposed to ≥ 20 μM of celecoxib for 72 h, but COX-2 expression was increased in DU145 cells. All three cell lines demonstrated pan-cytotoxicity when exposed to 100 μM celecoxib. When p53 expression was inhibited using siRNA in LNCaP cells, the inhibitory effects on cellular growth usually exerted by celecoxib were not changed significantly. Celecoxib reduces the growth of prostate cancer cell lines in part by decreasing proliferation, which suggests that the inhibition of growth of LNCaP cells by celecoxib is independent of normal levels of native p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号