首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Many real networks can be understood as two complementary networks with two kind of nodes. This is the case of metabolic networks where the first network has chemical compounds as nodes and the second one has nodes as reactions. In general, the second network may be related to the first one by a technique called line graph transformation (i.e., edges in an initial network are transformed into nodes). Recently, the main topological properties of the metabolic networks have been properly described by means of a hierarchical model. While the chemical compound network has been classified as hierarchical network, a detailed study of the chemical reaction network had not been carried out.  相似文献   

2.
Having previously introduced the mathematical framework of topological metabolic analysis (TMA) - a novel optimization-based technique for modeling metabolic networks of arbitrary size and complexity - we demonstrate how TMA facilitates unique methods of metabolic interrogation. With the aid of several hybridoma metabolic investigations as case-studies (Bonarius et al., 1995, 1996, 2001), we first establish that the TMA framework identifies biologically important aspects of the metabolic network under investigation. We also show that the use of a structured weighting approach within our objective provides a substantial modeling benefit over an unstructured, uniform, weighting approach. We then illustrate the strength of TAM as an advanced interrogation technique, first by using TMA to prove the existence of (and to quantitatively describe) multiple topologically distinct configurations of a metabolic network that each optimally model a given set of experimental observations. We further show that such alternate topologies are indistinguishable using existing stoichiometric modeling techniques, and we explain the biological significance of the topological variables appearing within our model. By leveraging the manner in which TMA implements metabolite inputs and outputs, we also show that metabolites whose possible metabolic fates are inadequately described by a given network reconstruction can be quickly identified. Lastly, we show how the use of the TMA aggregate objective function (AOF) permits the identification of modeling solutions that can simultaneously consider experimental observations, underlying biological motivations, or even purely engineering- or design-based goals.  相似文献   

3.

Background

In spite of the scale-free degree distribution that characterizes most protein interaction networks (PINs), it is common to define an ad hoc degree scale that defines “hub” proteins having special topological and functional significance. This raises the concern that some conclusions on the functional significance of proteins based on network properties may not be robust.

Methodology

In this paper we present three objective methods to define hub proteins in PINs: one is a purely topological method and two others are based on gene expression and function. By applying these methods to four distinct PINs, we examine the extent of agreement among these methods and implications of these results on network construction.

Conclusions

We find that the methods agree well for networks that contain a balance between error-free and unbiased interactions, indicating that the hub concept is meaningful for such networks.  相似文献   

4.
5.
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network’s capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.  相似文献   

6.
Metabolic networks supply the energy and building blocks for cell growth and maintenance. Cells continuously rewire their metabolic networks in response to changes in environmental conditions to sustain fitness. Studies of the systemic properties of metabolic networks give insight into metabolic plasticity and robustness, and the ability of organisms to cope with different environments. Constraint-based stoichiometric modeling of metabolic networks has become an indispensable tool for such studies. Herein, we review the basic theoretical underpinnings of constraint-based stoichiometric modeling of metabolic networks. Basic concepts, such as stoichiometry, chemical moiety conservation, flux modes, flux balance analysis, and flux solution spaces, are explained with simple, illustrative examples. We emphasize the mathematical definitions and their network topological interpretations.  相似文献   

7.
Hierarchical analysis of dependency in metabolic networks   总被引:7,自引:0,他引:7  
MOTIVATION: Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. RESULTS: We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. AVAILABILITY: Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html  相似文献   

8.
9.

Background  

Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks.  相似文献   

10.
MOTIVATION: Identification of functional modules in protein interaction networks is a first step in understanding the organization and dynamics of cell functions. To ensure that the identified modules are biologically meaningful, network-partitioning algorithms should take into account not only topological features but also functional relationships, and identified modules should be rigorously validated. RESULTS: In this study we first integrate proteomics and microarray datasets and represent the yeast protein-protein interaction network as a weighted graph. We then extend a betweenness-based partition algorithm, and use it to identify 266 functional modules in the yeast proteome network. For validation we show that the functional modules are indeed densely connected subgraphs. In addition, genes in the same functional module confer a similar phenotype. Furthermore, known protein complexes are largely contained in the functional modules in their entirety. We also analyze an example of a functional module and show that functional modules can be useful for gene annotation. CONTACT: yuan.33@osu.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

11.
Metabolic networks of many cellular organisms share global statistical features. Their connectivity distributions follow the long-tailed power law and show the small-world property. In addition, their modular structures are organized in a hierarchical manner. Although the global topological organization of metabolic networks is well understood, their local structural organization is still not clear. Investigating local properties of metabolic networks is necessary to understand the nature of metabolism in living organisms. To identify the local structural organization of metabolic networks, we analysed the subgraphs of metabolic networks of 43 organisms from three domains of life. We first identified the network motifs of metabolic networks and identified the statistically significant subgraph patterns. We then compared metabolic networks from different domains and found that they have similar local structures and that the local structure of each metabolic network has its own taxonomical meaning. Organisms closer in taxonomy showed similar local structures. In addition, the common substrates of 43 metabolic networks were not randomly distributed, but were more likely to be constituents of cohesive subgraph patterns.  相似文献   

12.
Steuer R 《Phytochemistry》2007,68(16-18):2139-2151
Cellular metabolism is characterized by an intricate network of interactions between biochemical fluxes, metabolic compounds and regulatory interactions. To investigate and eventually understand the emergent global behavior arising from such networks of interaction is not possible by intuitive reasoning alone. This contribution seeks to describe recent computational approaches that aim to asses the topological and functional properties of metabolic networks. In particular, based on a recently proposed method, it is shown that it is possible to acquire a quantitative picture of the possible dynamics of metabolic systems, without assuming detailed knowledge of the underlying enzyme-kinetic rate equations and parameters. Rather, the method builds upon a statistical exploration of the comprehensive parameter space to evaluate the dynamic capabilities of a metabolic system, thus providing a first step towards the transition from topology to function of metabolic pathways. Utilizing this approach, the role of feedback mechanisms in the maintenance of stability is discussed using minimal models of cellular pathways.  相似文献   

13.
Residue networks representing 595 nonhomologous proteins are studied. These networks exhibit universal topological characteristics as they belong to the topological class of modular networks formed by several highly interconnected clusters separated by topological cavities. There are some networks that tend to deviate from this universality. These networks represent small-size proteins having <200 residues. This article explains such differences in terms of the domain structure of these proteins. On the other hand, the topological cavities characterizing proteins residue networks match very well with protein binding sites. This study investigates the effect of the cutoff value used in building the residue network. For small cutoff values, <5 Å, the cavities found are very large corresponding almost to the whole protein surface. On the contrary, for large cutoff value, >10.0 Å, only very large cavities are detected and the networks look very homogeneous. These findings are useful for practical purposes as well as for identifying protein-like complex networks. Finally, this article shows that the main topological class of residue networks is not reproduced by random networks growing according to Erdös-Rényi model or the preferential attachment method of Barabási-Albert. However, the Watts-Strogatz model reproduces very well the topological class as well as other topological properties of residue network. A more biologically appealing modification of the Watts-Strogatz model to describe residue networks is proposed.  相似文献   

14.

Background

Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis.

Findings

We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering.

Conclusion

Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/  相似文献   

15.
Understanding the relationships between the structure (topology) and function of biological networks is a central question of systems biology. The idea that topology is a major determinant of systems function has become an attractive and highly disputed hypothesis. Although structural analysis of interaction networks demonstrates a correlation between the topological properties of a node (protein, gene) in the network and its functional essentiality, the analysis of metabolic networks fails to find such correlations. In contrast, approaches utilizing both the topology and biochemical parameters of metabolic networks, e.g., flux balance analysis, are more successful in predicting phenotypes of knockout strains. We reconcile these seemingly conflicting results by showing that the topology of the metabolic networks of both Escherichia coli and Saccharomyces cerevisiae are, in fact, sufficient to predict the viability of knockout strains with accuracy comparable to flux balance analysis on large, unbiased mutant data sets. This surprising result is obtained by introducing a novel topology-based measure of network transport: synthetic accessibility. We also show that other popular topology-based characteristics such as node degree, graph diameter, and node usage (betweenness) fail to predict the viability of E. coli mutant strains. The success of synthetic accessibility demonstrates its ability to capture the essential properties of the metabolic network, such as the branching of chemical reactions and the directed transport of material from inputs to outputs. Our results strongly support a link between the topology and function of biological networks and, in agreement with recent genetic studies, emphasize the minimal role of flux rerouting in providing robustness of mutant strains.  相似文献   

16.
Large-scale microarray gene expression data provide the possibility of constructing genetic networks or biological pathways. Gaussian graphical models have been suggested to provide an effective method for constructing such genetic networks. However, most of the available methods for constructing Gaussian graphs do not account for the sparsity of the networks and are computationally more demanding or infeasible, especially in the settings of high dimension and low sample size. We introduce a threshold gradient descent (TGD) regularization procedure for estimating the sparse precision matrix in the setting of Gaussian graphical models and demonstrate its application to identifying genetic networks. Such a procedure is computationally feasible and can easily incorporate prior biological knowledge about the network structure. Simulation results indicate that the proposed method yields a better estimate of the precision matrix than the procedures that fail to account for the sparsity of the graphs. We also present the results on inference of a gene network for isoprenoid biosynthesis in Arabidopsis thaliana. These results demonstrate that the proposed procedure can indeed identify biologically meaningful genetic networks based on microarray gene expression data.  相似文献   

17.

Background  

Several strains of bacteria have sequenced and annotated genomes, which have been used in conjunction with biochemical and physiological data to reconstruct genome-scale metabolic networks. Such reconstruction amounts to a two-dimensional annotation of the genome. These networks have been analyzed with a constraint-based formalism and a variety of biologically meaningful results have emerged. Staphylococcus aureus is a pathogenic bacterium that has evolved resistance to many antibiotics, representing a significant health care concern. We present the first manually curated elementally and charge balanced genome-scale reconstruction and model of S. aureus' metabolic networks and compute some of its properties.  相似文献   

18.
Xu K  Bezakova I  Bunimovich L  Yi SV 《Proteomics》2011,11(10):1857-1867
We investigated the biological significance of path lengths in 12 protein-protein interaction (PPI) networks. We put forward three predictions, based on the idea that biological complexity influences path lengths. First, at the network level, path lengths are generally longer in PPIs than in random networks. Second, this pattern is more pronounced in more complex organisms. Third, within a PPI network, path lengths of individual proteins are biologically significant. We found that in 11 of the 12 species, average path lengths in PPI networks are significantly longer than those in randomly rewired networks. The PPI network of the malaria parasite Plasmodium falciparum, however, does not exhibit deviation from rewired networks. Furthermore, eukaryotic PPIs exhibit significantly greater deviation from randomly rewired networks than prokaryotic PPIs. Thus our study highlights the potentially meaningful variation in path lengths of PPI networks. Moreover, node eccentricity, defined as the longest path from a protein to others, is significantly correlated with the levels of gene expression and dispensability in the yeast PPI network. We conclude that biological complexity influences both global and local properties of path lengths in PPI networks. Investigating variation of path lengths may provide new tools to analyze the evolution of functional modules in biological systems.  相似文献   

19.
MOTIVATION: Extracting functional information from protein-protein interactions (PPI) poses significant challenges arising from the noisy, incomplete, generic and static nature of data obtained from high-throughput screening. Typical proteins are composed of multiple domains, often regarded as their primary functional and structural units. Motivated by these considerations, domain-domain interactions (DDI) for network-based analyses have received significant recent attention. This article performs a formal comparative investigation of the relationship between functional coherence and topological proximity in PPI and DDI networks. Our investigation provides the necessary basis for continued and focused investigation of DDIs as abstractions for functional characterization and modularization of networks. RESULTS: We investigate the problem of assessing the functional coherence of two biomolecules (or segments thereof) in a formal framework. We establish essential attributes of admissible measures of functional coherence, and demonstrate that existing, well-accepted measures are ill-suited to comparative analyses involving different entities (i.e. domains versus proteins). We propose a statistically motivated functional similarity measure that takes into account functional specificity as well as the distribution of functional attributes across entity groups to assess functional similarity in a statistically meaningful and biologically interpretable manner. Results on diverse data, including high-throughput and computationally predicted PPIs, as well as structural and computationally inferred DDIs for different organisms show that: (i) the relationship between functional similarity and network proximity is captured in a much more (biologically) intuitive manner by our measure, compared to existing measures and (ii) network proximity and functional similarity are significantly more correlated in DDI networks than in PPI networks, and that structurally determined DDIs provide better functional relevance as compared to computationally inferred DDIs.  相似文献   

20.
MOTIVATION: Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. RESULTS: In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the same subset are really functionally related. The rational decomposition of metabolic networks, and subsequent studies of the subsets, make it more amenable to understand the inherent organization and functionality of metabolic networks at the modular level. SUPPLEMENTARY INFORMATION: http://genome.gbf.de/bioinformatics/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号