首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
miRNAs regulate gene expression by binding with mRNAs of many genes. Studying their effects on genes involved in oncogenesis is important in cancer diagnostics and therapeutics. The RNAHybrid 2.1 program was used to predict the strong miRNA binding sites (p < 0.0005) in target mRNAs. The program Finder 2.2 was created to verify 784 intergenic miRNAs (ig-miRNA) origin. Among 54 considered oncogenes and tumor suppressor genes, 47 genes are the best targets for ig-miRNAs. Accordingly, these genes are strongly regulated by 111 ig-miRNAs. Some miRNAs bind several mRNAs, and some mRNAs have several binding sites for miRNAs. Of the 54 mRNAs, 21.8%, 43.0%, and 35.2% of the miRNA binding sites are present in the 5'UTRs, CDSes, and 3'UTRs, respectively. The average density of the binding sites for miRNAs in the 5'UTR was 4.4 times and 4.1 times greater than in the CDS and the 3'UTR, respectively. Three types of interactions between miRNAs and mRNAs were identified, which differ according to the region of the miRNA bound to the mRNA: 1) binding occurs predominantly via the 3'-region of the miRNA; 2) binding occurs predominantly through the central region of the miRNA; and 3) binding occurs predominantly via the 5'-region of the miRNA. Several miRNAs effectively regulate only one gene, and this information could be useful in molecular medicine to modulate translation of the target mRNA. We recommend described new sites for validation by experimental investigation.  相似文献   

3.
4.
Fast and effective prediction of microRNA/target duplexes   总被引:32,自引:1,他引:31  
  相似文献   

5.
6.
Isolation of microRNA targets by miRNP immunopurification   总被引:9,自引:3,他引:6       下载免费PDF全文
  相似文献   

7.
8.
9.
RNA-binding protein Dnd1 inhibits microRNA access to target mRNA   总被引:12,自引:0,他引:12  
MicroRNAs (miRNAs) are inhibitors of gene expression capable of controlling processes in normal development and cancer. In mammals, miRNAs use a seed sequence of 6-8 nucleotides (nt) to associate with 3' untranslated regions (3'UTRs) of mRNAs and inhibit their expression. Intriguingly, occasionally not only the miRNA-targeting site but also sequences in its vicinity are highly conserved throughout evolution. We therefore hypothesized that conserved regions in mRNAs may serve as docking platforms for modulators of miRNA activity. Here we demonstrate that the expression of dead end 1 (Dnd1), an evolutionary conserved RNA-binding protein (RBP), counteracts the function of several miRNAs in human cells and in primordial germ cells of zebrafish by binding mRNAs and prohibiting miRNAs from associating with their target sites. These effects of Dnd1 are mediated through uridine-rich regions present in the miRNA-targeted mRNAs. Thus, our data unravel a novel role of Dnd1 in protecting certain mRNAs from miRNA-mediated repression.  相似文献   

10.
11.
Recent small RNA sequencing data has uncovered 3′ end modification of mature microRNAs (miRNAs). This non-templated nucleotide addition can impact miRNA gene regulatory networks through the control of miRNA stability or by interfering with the repression of target mRNAs. The miRNA modifying enzymes responsible for this regulation remain largely uncharacterized. Here we describe the ability for two related terminal uridyl transferases (TUTases), Zcchc6 (TUT7) and Zcchc11 (TUT4), to 3′ mono-uridylate a specific subset of miRNAs involved in cell differentiation and Homeobox (Hox) gene control. Zcchc6/11 selectively uridylates these miRNAs in vitro, and we biochemically define a bipartite sequence motif that is necessary and sufficient to confer Zcchc6/11 catalyzed uridylation. Depletion of these TUTases in cultured cells causes the selective loss of 3′ mono-uridylation of many of the same miRNAs. Upon TUTase-dependent loss of uridylation, we observe a concomitant increase in non-templated 3′ mono-adenylation. Furthermore, TUTase inhibition in Zebrafish embryos causes developmental defects and aberrant Hox expression. Our results uncover the molecular basis for selective miRNA mono-uridylation by Zcchc6/11, highlight the precise control of different 3′ miRNA modifications in cells and have implications for miRNA and Hox gene regulation during development.  相似文献   

12.
13.
Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation   总被引:47,自引:0,他引:47  
MicroRNAs (miRNAs) are approximately 22 nucleotide RNAs that negatively regulate the expression of protein-coding genes. In a present model of miRNA function in animals, miRNAs that form imperfect duplexes with their targets inhibit protein expression without affecting mRNA levels. Here, we report that in C. elegans, regulation by the let-7 miRNA results in degradation of its lin-41 target mRNA, despite the fact that its 3'UTR regulatory sequences can only partially base-pair with the miRNA. Furthermore, lin-14 and lin-28 are targets of the lin-4 miRNA, and we show that the mRNA levels for these protein-coding genes significantly decrease in response to lin-4 expression. This study reveals that mRNAs containing partial miRNA complementary sites can be targeted for degradation in vivo, raising the possibility that regulation at the level of mRNA stability may be more common than previously appreciated for the miRNA pathway.  相似文献   

14.
15.
microRNAs (miRNAs) are a large class of endogenous short RNAs that repress gene expression. Many miRNAs are conserved throughout evolution, and dysregulation of miRNA pathways has been correlated with an increasing number of human diseases. In animals, miRNAs typically bind to the 3' untranslated region (3'UTR) of target mRNAs with imperfect sequence complementarity and repress translation. Despite their importance in regulating biological processes in numerous organisms, the mechanisms of miRNA function are largely unknown. Here, we report in vitro reactions for miRNA-directed translational gene silencing. These reactions faithfully recapitulate known in vivo hallmarks of mammalian miRNA function, including a requirement for a 5' phosphate and perfect complementarity to the mRNA target in the 5' seed region. Translational gene silencing by miRNAs in vitro requires target mRNAs to possess a 7-methyl G cap and a polyA tail, whereas increasing polyA tail length alone can increase miRNA silencing activity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号