首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polymorphism in the lengths of restriction fragments of the whole cpDNA molecule was studied in cultivated olive and in oleaster (wild olive) over the whole Mediterranean Basin. Seventy two olive cultivars, 89 very old trees cultivated locally, and 101 oleasters were scored for ten endonucleases. Moreover, maternal inheritance of cpDNA in olive was shown by analysing the progeny of a controlled cross between two parents which differed in their cpDNA haplotypes. In the whole species, three site- and three length-mutations were observed, corresponding to five distinct chlorotypes. The same chlorotype (I) was predominant in both oleasters and cultivated olive trees, confirming that these are closely related maternally. Three other chlorotypes (II, III and IV) were observed exclusively in oleaster material and were restricted either to isolated forest populations or to a few individuals growing in mixture with olive trees possessing the majority chlorotype. An additional chlorotype (V) was characterised by three mutations located in distinct parts the cpDNA molecule but which were never observed to occur separately. This chlorotype, more widely distributed than the other three, in both cultivated and wild olive, and occurring even in distant populations, was observed exclusively in male-sterile trees showing the same specific pollen anomaly. However, in the present study, no evidence was provided for a direct relationship between the occurrence of the cpDNA mutations and male sterility. It is suggested that the large geographic distribution of chlorotype V may be related to the high fruit production usually observed on male-sterile trees. These may be very attractive for birds which are fond of olive fruit and spread the stones efficiently. Probably for the same reason, people preserved male-sterile oleasters for long periods and, in several places, used male-sterile cultivars over large areas. Received: 25 November 1998 / Accepted: 19 December 1998  相似文献   

2.
3.
The development of oil bodies and oil droplets in fruits of olive was examined at the ultrastructural level. Both oil bodies that form in young fruits and oil droplets that develop with fruit maturation are cytoplasmic bodies. The formation of the small oil bodies occurs in localized regions of the cytoplasm. These bodies are closely associated and fuse together, forming a small oil droplet that protruded against and indented the vacuolar membrane. As the fruit matures, new oil bodies appear to form and fuse with the oil droplet, resulting in the formation of a single large oil droplet of about 30 μm in diameter in most mature mesocarp cells. The cytoplasmic region where the oil bodies formed had a granulate, ultrastructural appearance, and cytoplasmic components such as membranes and ribosomes were noticeably absent in these regions. The granulate material coated the oil bodies and oil droplets, and appeared as a thin, compressed band between the round inner surface of the droplets and the indented tonoplast. We suggest that this granulate material is involved in the synthesis of the oil and, with enlargement of the oil bodies, this coat becomes thinner in regions where they are closely associated, resulting in zones where confluence of the oil occurs.  相似文献   

4.
This study reports 19 simple sequence repeat loci developed from a genomic library of the olive tree (Olea europaea L.), of which 12 revealed to be polymorphic and informative, ranging from two to 14 alleles.  相似文献   

5.
Seven polymorphic microsatellites were developed in olive. Six of them came from a genomic library enriched for GA and CA repeat sequences. They showed single locus polymorphism in a set of 23 olive cultivars (from six to nine alleles per locus). Three different pairs of loci were sufficient to discriminate all cultivars. The other polymorphic primer pair was designed from a published sequence for olive lupeol sgutase and revealed just two alleles. The seven primer pairs were tested on two accessions of five other species of the Oleaceae and three, EMO2, EMO13 and EMO90, revealed polymorphism in two, four and three species, respectively.  相似文献   

6.
One hundred and two olive RAPD profiles were sampled from all around the Mediterranean Basin. Twenty four clusters of RAPD profiles were shown in the dendrogram based on the Ward’s minimum variance algorithm using chi-square distances. Factorial discriminant analyses showed that RAPD profiles were correlated with the use of the fruits and the country or region of origin of the cultivars. This suggests that cultivar selection has occurred in different genetic pools and in different areas. Mitochondrial DNA RFLP analyses were also performed. These mitotypes supported the conclusion also that multilocal olive selection has occurred. This prediction for the use of cultivars will help olive growers to choose new foreign cultivars for testing them before an eventual introduction if they are well adapted to local conditions. Received: 10 April 2000 / Accepted: 15 May 2000  相似文献   

7.
BACKGROUND: Phylogenetic and phylogeographic investigations have been previously performed to study the evolution of the olive tree complex (Olea europaea). A particularly high genomic diversity has been found in north-west Africa. However, to date no exhaustive study has been addressed to infer putative polyploidization events and their evolutionary significance in the diversification of the olive tree and its relatives. METHODS: Representatives of the six olive subspecies were investigated using (a) flow cytometry to estimate genome content, and (b) six highly variable nuclear microsatellites to assess the presence of multiple alleles at co-dominant loci. In addition, nine individuals from a controlled cross between two individuals of O. europaea subsp. maroccana were characterized with microsatellites to check for chromosome inheritance. KEY RESULTS: Based on flow cytometry and genetic analyses, strong evidence for polyploidy was obtained in subspp. cerasiformis (tetraploid) and maroccana (hexaploid), whereas the other subspecies appeared to be diploids. Agreement between flow cytometry and genetic analyses gives an alternative approach to chromosome counting to determine ploidy level of trees. Lastly, abnormalities in chromosomes inheritance leading to aneuploid formation were revealed using microsatellite analyses in the offspring from the controlled cross in subsp. maroccana. CONCLUSIONS: This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation of tetraploids and hexaploids may have played a major role in the diversification of the olive complex in north-west Africa. The fact that polyploidy is found in narrow endemic subspecies from Madeira (subsp. cerasiformis) and the Agadir Mountains (subsp. maroccana) suggests that polyploidization has been favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors of subspp. guanchica and europaea.  相似文献   

8.
9.
The monoclonal antibody OL-1 and transmission electron microscopy were used to locate immunologically the major allergen of olive pollen. Ole e I, during pollen grain development. Within the pollen grain, allergenic proteins are located in the cisternae of the rough endoplasmic reticulum. Our findings indicate that the synthesis of these proteins starts in the vegetative cytoplasm of olive pollen during the early maturation stage.Dedicated to Professor Andreas Sievers on the occasion of his retirement  相似文献   

10.
The analysis of the total lipid fraction from the Sayali variety of olive oil was accomplished in the present investigation. Glyceridic, unsaponifiable and flavour fractions of the oil were isolated and identified using several analytical methods. Chromatographic techniques have proven to be suitable for these determinations, especially capillary gas chromatography. Gas chromatography coupled to mass spectrometry was successfully used to identify sterols, triterpenes alcohols, 4-monomethylsterols, aliphatic alcohols and aroma compounds in our samples. Furthermore, solid phase microextraction was used to isolate volatiles from the total lipid fraction. Results from the quantitative characterization of Sayali olive oil showed that oleic acid (77.4%) and triolein (47.4%) were the dominant glyceridic components. However, the main compounds of the unsaponifiable fraction were β-sitosterol (147.5 mg/100 g oil), 24-methylene cycloartenol (146.4 mg/100 g oil) and hexacosanol (49.3 mg/100 g oil). Moreover, results showed that the aldehydic compounds were the major flavours present in Sayali olive oil.  相似文献   

11.
The present work focused on the quality and the chemical composition of monovarietal virgin olive oil from the Sigoise variety grown in two different locations in Tunisia, viz., a sub‐humid zone (Béjaoua, Tunis) and an arid zone (Boughrara, Sfax). In addition to the quality characteristics (acidity, peroxide value, and the spectrophotometric indices K232 and K270) and the chemical composition (content of fatty acids, antioxidants, and volatile compounds) of the oil, the fruit characteristics of the olives were studied. Except for the content of the majority of the fatty acids, there were significant differences observed in the oil composition of olives that were cultivated in different locations. The content of total phenols and lipoxygenase (LOX) oxidation products was higher for olives grown at the higher altitude, whereas that of α‐tocopherol, carotenes, and chlorophylls was higher for olives from the Boughrara region (lower altitude). Moreover, olives produced at the higher altitude showed a higher ripeness index and oil content than those cultivated at the lower altitude.  相似文献   

12.
Olive fruit characteristics (weight, pulp/stone ratio, and oil and moisture content) and the iodine value (IV) of 31 new olive progenies (Olea europaea L.) were determined. To evaluate the effect of the genetic variability on these parameters, the new olive progenies, obtained through cross‐pollination between Tunisian and Mediterranean olive cultivars, were planted in a selected grove guaranteeing the homogeneity of the pedologic and climatic conditions. A strong genetic effect and significant differences between genotypes were obtained for the IV and the fruit characteristics evaluated. Discriminant analysis was used to classify the new progenies as distinct from each other, based on their IV, and their pulp and stone weight. An almost full discrimination of the olives from different genotypes was only achieved when the fruit characteristics (pulp and stone weight) and the IV data were analyzed together.  相似文献   

13.
14.
Our study reports the triglyceride (triacylglycerol, TAG) composition of five new Tunisian virgin olive oil cultivars obtained through controlled crossings of the cultivar (cv.) Chemlali Sfax. These cultivars have been selected among a progeny of 500 olive descendants, based on an evaluation of the fatty‐acid (FA) composition of their oils. Among these samples, two were derived from the crossing with the cv. Sigoise as pollinator (SM634) or pollen acceptor (SM1110) and the others from the crossing with the cv. Meski as pollen acceptor (SM513, SM514, and SM517). The five descendants were characterized by a good fat value, a balanced FA composition, and a high content of triolein, varying between 26.9 (SM514) and 45.46% (SM1110). They had an improved FA composition as compared to that of the cv. Chemlali Sfax and their fruits were slightly bigger. The principal component analysis suggested that the TAG variables were more suitable than the total FAs for an optimum classification of the cultivar samples analyzed. The cultivars obtained through the crossing with the cv. Sigoise (as pollen acceptor or pollinator) had a more favorable composition of FAs and TAG than those obtained through the crossing with the cv. Meski, which indicated that genetic factors had the most important influence on the quality of the virgin olive oils.  相似文献   

15.
Polymorphism in the lengths of restriction fragments of the whole cpDNA molecule were studied in 15 taxa (species or subspecies) of the genus Olea. From restriction analysis using nine endonucleases, 28 site mutations and five length polymorphisms were identified, corresponding to 12 distinct chlorotypes. From a phenetic analysis based on a Nei’s dissimilarity matrix and a Dollo parsimony cladistic analysis using, as an outgroup, a species of the genus Phillyrea close to Olea, the ten taxa of section Olea were distinguished clearly from the five taxa of section Ligustroides which appear to posses more ancestral cpDNA variants. Within the section Ligustroides, the tropical species from central-western Africa, Olea hochtetteri, showed a chlorotype which differed substantially from those of the other four Olea taxa growing in southern Africa, supporting a previous assessment according to which O. hochtetteri may have been subjected to a long period of geographical isolation from the other Olea taxa. Within the Olea section, three phyla were identified corresponding to South and East Africa taxa, Asiatic taxa, and a group including Saharan, Macaronesian and Mediteranean taxa, respectively. On the basis of cpDNA variation, the closest Olea taxa to the single Mediterranean species, Olea europaea, represented by its very predominant chlorotype, observed in both wild and cultivated olive, were found to be Olea laperrinei (from the Sahara), Olea maroccana (from Maroccan High Atlas) and Olea cerasiformis (from Macaronesia). These three taxa, which all share the same chlorotype, may have a common maternal origin. Received: 5 December 1999 / Accepted: 30 December 1999  相似文献   

16.
The influence of different irradiance conditions was evaluated under natural solar radiation by comparing well-exposed (in) and shaded fruit (out) in canopies of olive trees (Olea europaea L). Over a 2-year period, from 50 days after full bloom up to harvest time, “in” and “out” olive samples of two genotypes (“Frantoio Millennio” and “Coratina 5/19”) were periodically collected. Morphological, histochemical, and biochemical analysis were performed to study the changes on fruit morphometric traits, oil body accumulation, and β-glucosidase enzyme activity. Some parameters were modified by shading inside the canopy in which the proportion of incident photosynthetically active radiation intercepted by the crop was 47%. Shaded fruits developed at slow rate and were characterized by late darkgoing time, reduced size, with a tendency toward oblong shape. The rapid histochemical procedure proposed to estimate the oil body accumulation during fruit ripening showed that a reduced irradiance caused a decrease in oil body density. The canopy position influenced, in a different way, the β-glucosidase activity in relation to the fruit-ripening stage in both genotypes. These findings indicate that providing an adequate and uniform lighting of the olive canopy by careful choices of orchard management practices can be a key factor for several yield components.  相似文献   

17.
Aim The oleaster is believed to have originated in the eastern Mediterranean, implying that those in the western Mediterranean basin could be feral. Several studies with different molecular markers (isozymes, random amplified polymorphic DNA, amplified fragment length polymorphism) have shown a cline between the eastern and the western populations, which supports this hypothesis. To reconstruct the post‐glacial colonization history and establish a relationship between olive and oleaster populations in the Mediterranean basin, analyses were carried out on the genetic variation of chloroplast DNA (chlorotype) and at 12 unlinked simple sequence repeat (SSR) loci, sampling a total of 20 oleaster groves. Location This is the first known large‐scale molecular study of SSR loci based on samples of both oleasters and cultivars from the entire Mediterranean basin. Methods Samples were taken from 166 oleasters in 20 groves of modern populations, and 40 cultivars to represent molecular diversity in the cultivated olive. The Bayesian method and admixture analysis were used to construct the ancestral populations (RPOP; reconstructed panmictic oleaster populations) and to estimate the proportion of each RPOP in each tree. If one tree can be assigned to two or more RPOPs, it can be regarded as a product of hybridization between trees from different populations (i.e. admix origin). Results On this first examination of the SSR genetic diversity in the olive and oleaster, it was found to be structured in seven RPOPs in both eastern and western populations. Based on different population genetic methods, it was shown that: (1) oleasters are equally present in the eastern and the western Mediterranean, (2) are native, and (3) are not derived from cultivars. Chlorotypes (one and three in the eastern and western Mediterranean, respectively) revealed fruit displacement for the oleasters. Main conclusions Oleaster genetic diversity is divided into seven regions that could overlay glacial refuges. The gradient, or cline, of genetic diversity revealed by chloroplast and SSR molecular markers was explained by oleaster recolonization of the Mediterranean basin from refuges after the last glacial event, located in both eastern and western regions. It is likely that gene flow has occurred in oleasters mediated by cultivars spread by human migration or through trade. Animals may have helped spread oleasters locally, but humans have probably transported olives but not oleaster fruits over long distances. We found that cultivars may have originated in several RPOPs, and thus, some may have a more complex origin than expected initially.  相似文献   

18.
The olive tree is a traditionally nonirrigated crop that occupies quite an extensive agricultural area in Mediterranean-type agroecosystems. Improvements in water-use efficiency of crops are essential under the scenarios of water scarcity predicted by global change models for the Mediterranean region. Recently, irrigation has been introduced to increase the low land productivity, but there is little information on ecophysiological aspects and quality features intended for a sagacious use of water, while being of major importance for the achievement of high-quality products as olive oil. Therefore, deficit irrigation programmes were developed to improve water-use efficiency, crop productivity and quality in a subhumid zone of Southern Italy with good winter–spring precipitation. The response of mature olive trees to deficit irrigation in deep soils was studied on cultivars Frantoio and Leccino by examining atmospheric environment and soil moisture, gas exchange and plant water status, as well as oil yield and chemical analysis. Trees were not irrigated (rainfed) or subjected to irrigation at 66% and 100% of crop evapotranspiration (ETC), starting from pit hardening to early fruit veraison. Improvements in the photosynthetic capacity induced by increasing soil water availability were only of minor importance. However, plant water status was positively influenced by deficit irrigation, with 66% and 100% of ETC treatments hardly differing from one another though consistently diverging from rainfed plants. The effect of water stress on photosynthesis was mainly dependent on diffusion resistances in response to soil moisture. Leccino showed higher instantaneous water-use efficiency than Frantoio. Crop yield increased proportionally to the amount of seasonal water volume, confirming differences between cultivars in water-use efficiency. The unsaturated/saturated and the monounsaturated/polyunsaturated fatty acid ratios of the oil also differed between cultivars, while the watering regime had minor effects. Although irrigation can modify the fatty acid profile, polyphenol contents were scarcely affected by the water supply. Irrigation to 100% of ETC in the period August–September might be advisable to achieve high-quality yields, while saving consistent amounts of water.  相似文献   

19.
This study has been aimed at providing a qualitative and quantitative evaluation of selected phytochemicals such as phenolic acids, flavonoids, oleuropein, fatty acids profile, and volatile oil compounds, present in wild olive leaves harvested in Portugal, as well as at determining their antioxidant and cytotoxic potential against human melanoma HTB‐140 and WM793, prostate cancer DU‐145 and PC‐3, hepatocellular carcinoma Hep G2 cell lines, as well as normal human skin fibroblasts BJ and prostate epithelial cells PNT2. Gallic, protocatechuic, p‐hydroxybenzoic, vanillic acids, apigenin 7‐O‐glucoside, luteolin 7‐O‐glucoside, and rutin were identified in olive leaves. The amount of oleuropein was equal to 22.64 g/kg dry weight. (E)‐Anethole (32.35%), fenchone (11.89%), and (Z)‐3‐nonen‐1‐ol (8%) were found to be the main constituents of the oil volatile fraction, whereas palmitic, oleic, and alpha‐linolenic acid were determined to be dominating fatty acids. Olive leaves methanol extract was observed to exerted a significant, selective cytotoxic effect on DU‐145 and PC‐3 cell lines. Except the essential oil composition, evaluated wild olive leaves, with regard to their quantitative and qualitative composition, do not substantially differ from the leaves of other cultivars grown for industrial purposes and they reveal considerable antioxidant and cytotoxic properties. Thus, the wild species may prove to be suitable for use in traditional medicine as cancer chemoprevention.  相似文献   

20.
In Argentina, the climatic pattern of the olive production areas is characterised by a marked water deficit during winter and spring months. A field experiment was carried out to evaluate the effect of water availability during the pre‐flowering–flowering period on vegetative, reproductive and yield responses of olive trees grown in central Argentina. From the end of autumn to mid‐spring, four irrigation treatments were imposed to olive trees (Olea europaea, cv. Arbequina and Manzanilla) at 0, 25, 50 and 75% estimated crop evapotranspiration (ETc). Also, a control treatment was kept at 100% ETc for the entire year. For the first crop year evaluated, water deficit applied at early June, approximately 4 months prior to bloom, reduced the vegetative shoot growth and delayed the flowering time, resulting in shortening of the fruit maturation period and, ultimately, decreased fructification. Trees irrigated with high (75% of ETc) and full (100% of ETc) winter‐spring water supply presented significantly higher values of flower density, fruit density and final fruit yield which resulted in water productivity (kg fruits mm?1 of irrigation/ha) enhancements of about 500% (cv. Arbequina) and 330% (cv. Manzanilla) with respect to those obtained from the corresponding unirrigated treatments. Differences between treatments in oil content and composition were primarily attributed to variations in fruit maturity. Differences in fatty acid composition were stronger in cv. Arbequina where a gradual increase in oleic acid content was registered in parallel to the increase in irrigation water supply. From a practical stand point, results obtained from most of the analysed parameters were quite similar for both T75 and T100 treatments. Thus, the possible convenience of irrigation at T75% ETc should be considered since it may warrant profitable olive production while saving a considerably quantity of irrigation water in the olive production area in central Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号