首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular and Cellular Biochemistry - Endoplasmic reticulum (ER) stress is a form of cellular stress that is experienced by cells both under normal physiological conditions such as in professional...  相似文献   

3.
Neuronal nitric oxide synthases (nNOS) are Ca2+/calmodulin-activated enzymes that synthesize the gaseous messenger nitric oxide (NO). nNOSμ and the recently described nNOSβ, both spliced nNOS isoforms, are important enzymatic sources of NO in skeletal muscle, a tissue long considered to be a paradigmatic system for studying NO-dependent redox signaling. nNOS is indispensable for skeletal muscle integrity and contractile performance, and deregulation of nNOSμ signaling is a common pathogenic feature of many neuromuscular diseases. Recent evidence suggests that both nNOSμ and nNOSβ regulate skeletal muscle size, strength, and fatigue resistance, making them important players in exercise performance. nNOSμ acts as an activity sensor and appears to assist skeletal muscle adaptation to new functional demands, particularly those of endurance exercise. Prolonged inactivity leads to nNOS-mediated muscle atrophy through a FoxO-dependent pathway. nNOS also plays a role in modulating exercise performance in neuromuscular disease. In the mdx mouse model of Duchenne muscular dystrophy, defective nNOS signaling is thought to restrict contractile capacity of working muscle in two ways: loss of sarcolemmal nNOSμ causes excessive ischemic damage while residual cytosolic nNOSμ contributes to hypernitrosylation of the ryanodine receptor, causing pathogenic Ca2+ leak. This defect in Ca2+ handling promotes muscle damage, weakness, and fatigue. This review addresses these recent advances in the understanding of nNOS-dependent redox regulation of skeletal muscle function and exercise performance under physiological and neuromuscular disease conditions.  相似文献   

4.
We examined whether the quantity of exercise performed influences the expression of monocarboxylate transporter (MCT) 1 and MCT4 in mouse skeletal muscles (plantaris, tibialis anterior, soleus) and heart. Wheel running exercise (1, 3, and 6 wk) was used, which results in marked variations in self-selected running activity. Differences in muscle MCT1 and MCT4 among animals, before the initiation of running, were not related to the quantity of exercise performed on the first day of wheel running. No changes in MCT4 were observed over the course of the study (P > 0.05). After 6 wk of running, were there significant increases in heart (50%; P < 0.05) and muscle MCT1 (31-60%; P < 0.05) but not after 1 and 3 wk (P > 0.05). Because skeletal muscle MCT1 and running distances varied considerably, we examined the relationship between these two parameters. Within the first week of training, MCT1 was negatively correlated with the accumulated running distance (r = -0.70, P < 0.05). On further analysis, it appears that, in the first week, excessive running (>20 km/wk) represses MCT1 (-16.1%; P < 0.05), whereas more modest amounts of running (<20 km/wk) increase MCT1 (+37%; P < 0.05). After 3 wk of running, a positive relationship was observed between MCT1 and running distance (r = +0.76), although there is a threshold that must be exceeded before an increase over the control animals occurs. Finally, in week 6, when MCT1 was increased in the tibialis anterior and plantaris muscles, there were no correlations with the accumulated running distances. These studies have shown that mild exercise training fails to increase MCT4 and that changes in MCT1 are complex, depending not only the accumulated exercise but also on the stage of training.  相似文献   

5.
Forty-eight sedentary and 39 quite active or well-trained men participated in this study. Muscle biopsy samples were taken from the vastus lateralis for the determination of fiber type composition (I, IIa, IIb), fiber type area, and assay of the following enzymes: malate dehydrogenase (MDH), 3-hydroxyacyl CoA dehydrogenase (HADH) and oxoglutarate dehydrogenase (OGDH). Maximal oxygen uptake (VO2max) was determined with a progressive cycle ergometer test, while endurance performance or maximal aerobic capacity (MAC) was defined as the total work output during a 90-min cycle ergometer test. Correlation analysis revealed no evidence of association between fiber type composition and VO2max kg-1 or MAC kg-1 in sedentary subjects, while active men exhibited significant correlation between % type I (r = 0.52), % type IIb (r = 0.31) and VO2max kg-1. Enzyme activities were not significantly correlated with MAC kg-1 and VO2max kg-1 in sedentary men while active men exhibited significant correlation for the three enzymes (0.37 less than or equal to r less than or equal to 0.51) with VO2max kg-1. These results show that the contribution of muscle fiber type and enzyme activities to aerobic performance may be inflated from a statistical point of view by the training status heterogeneity of subjects. They also suggest that variation in these muscle characteristics does not account for the individual differences in aerobic performance of subjects who have never trained before. Therefore, the assessment of muscle characteristics is not as useful as originally thought for the detection of individuals with a high potential for endurance performance among untrained subjects.  相似文献   

6.
During dynamic contractions performed on a cycle ergometer, we studied the influence of motor unit (MU) recruitment on the electromyographic (EMG) spectral content by exerting mechanical power of different intensities, which was chosen to remain below the maximal aerobic power (VO2max). The spectral parameters: EMG total power (PEMG), mean (MPF) and median (MED) power frequencies, which are the most representative of the EMG spectral content, were calculated according to the EMG activity of the vastus medialis muscle (VM) and soleus muscle (SOL) of the right leg. For VM and SOL, PEMG increased linearly with exerted power demonstrating an enhancement of MU recruitment. Moreover these relationships were less scattered when exerted power was expressed as a percentage of VO2max. Changes in MPF and MED with varying exercise intensities were different from one subject to another. For a set of subjects, MPF and MED were found to be independent of exerted power. Although VM and SOL muscles are different in fibre type composition, similar results were obtained for both EMG activities. We have concluded that for dynamic contractions performed at different intensities below VO2max, the recruitment of the MU has a poor effect on the EMG spectral content whatever the predominant type of fibre.  相似文献   

7.

Background

A substrate cycle is a metabolic transformation in which a substrate A is phosphorylated to A?P at the expense of ATP (or another “high energy” compound), and A?P is converted back to A by a nucleotidase or a phosphatase. Many biochemists resisted the idea of such an ATP waste. Why a non-phosphorylated metabolite should be converted into a phosphorylated form, and converted back to its non-phosphorylated form through a “futile cycle”?

Aim of review

In this Review we aim at presenting our present knowledge on the biochemical features underlying the interrelation between the muscle purine nucleotide cycle and the oxypurine cycle, and on the metabolic responses of the two cycles to increasing intensities of muscle contraction.

Key scientific concepts of review

Nowadays it is widely accepted that the substrate cycles regulate many vital functions depending on the expense of large amounts of ATP, including skeletal muscle contraction, so that the expense of some extra ATP and “high energy” compounds, such as GTP and PRPP via substrate cycles, is not surprising. The Review emphasizes the strict metabolic interrelationship between the purine nucleotide cycle and the oxipurine cycle.
  相似文献   

8.
9.
1. Mitochondria were isolated according to their cellular location within the fibers of pooled gastrocnemius and plantaris muscle of the rat. This procedure yields two populations of mitochondria which display different biochemical properties. 2. The adaptive response of these mitochondria populations to the chronic exposure to different elevated energy demands (different modes of exercise training) was investigated. 3. The observed changes in mitochondrial protein content and cytochrome oxidase activity in the respective mitochondria population suggests that each population is capable of independent adaptations. 4. The adaptive response of each mitochondria population, furthermore, was predictable with respect to the metabolic energy demand of the exercise training workload.  相似文献   

10.
11.
It is well-known that 2 weeks of hind-limb suspension or space flight induce the sufficient decrease of the physical performance and simultaneously changes of muscle contractile properties and fiber size. However, the data on enzyme activities changes at present are contradictory. Numerous authors have pointed to the increase, reduction of its activity as well as its stability after experiments of the similar design. In previous studies it was shown that beta-GPA (beta-guanidino-propionic acid) administration increased the oxidative enzyme activities in the skeletal muscles and improved their contractile properties in hind-limb suspended rats. The aim of our study is to clear out what determines changes of the physical performance after 2 weeks of hind-limb suspension and beta-GPA administration.  相似文献   

12.
13.
This study was done to evaluate the effect of insulin on sugar transport into skeletal muscle after exercise. The permeability of rat epitrochlearis muscle to 3-O-methylglucose (3-MG) was measured after exposure to a range of insulin concentrations 30, 60, and 180 min after a bout of exercise. Thirty and 60 min after exercise, the effects of exercise and insulin on 3-MG transport were additive over a wide range of insulin concentrations, with no increase in sensitivity or responsiveness to insulin. After 180 min, when approximately 66% of the exercise-induced increase in sugar transport had worn off, both the responsiveness and sensitivity of the glucose transport process to insulin were increased. These findings appear compatible with the hypothesis that the actions of exercise and insulin result in activation and/or translocation into the plasma membrane of two separate pools of glucose transporters in mammalian skeletal muscle.  相似文献   

14.
We recently observed rapid shallow breathing during recovery from maximal exercise in some normal subjects. We wondered whether this phenomenon is randomly related to level of exercise or is limited to recovery from very high levels of exercise. We monitored ventilation, tidal volume, and respiratory frequency in seven normal subjects during and after exercise. Each subject exercised on several occasions on separate days. At least two of the tests were maximal (i.e., subject terminated). In the other tests exercise was terminated by the experimenter at different fractions of the highest level attained by the subject. There was no systematic difference between breathing pattern during exercise and recovery in tests where final O2 consumption (VO2) was 45-92% of the subjects' highest VO2. By contrast 13 of 19 studies in which final VO2 was 92-100% of highest VO2 were followed by relative rapid shallow breathing. We conclude that rapid shallow breathing during recovery from exercise is a phenomenon that is limited to very high exercise levels. On consideration of the various mechanisms that may be entertained to explain this phenomenon, we believe that development of pulmonary congestion-interstitial edema at very high levels of exercise is the most consistent with our findings.  相似文献   

15.
The size of hyaluronan was compared between tissue and lymph using a combination of agarose gel electrophoresis and radiometric assay. Prenodal lymph was collected from heel skin and the gastrocnemius muscle in anesthetized rabbits. The major fraction of hyaluronan in both tissues had a molecular weight >4 million. Lymph contained primarily low-molecular-weight hyaluronan (<0.79 x 10(6)), which was absent from tissue. Volume loading produced a preferential increase in the flux of low-molecular-weight hyaluronan, indicating that tissue contains a small quantity of mobile, low-molecular-weight hyaluronan. The maximum daily removal of hyaluronan by lymph was <1% of the tissue content. The amount of lysosomal hyaluronidase activity in tissue was more than enough to account for a rapid turnover of hyaluronan. The data support the conclusion that lymph drainage is not significant in the normal catabolism of hyaluronan and may represent a small amount that becomes detached from the pericellular and extracellular matrixes.  相似文献   

16.
Changes in cortisol concentration in response to exercise at 3 different intensities were quantified. Ten apparently healthy, recreationally active males participated. On 4 separate occasions, subjects were assigned a random order of 1-hour cycle ergometer bouts of exercise at 44.5 +/- 5.5%, 62.3 +/- 3.8%, and 76.0 +/- 6.0% (mean +/- SD) of VO2peak and a resting control session. Saliva samples were collected before exercise at 10, 20, 40, and 59 minutes of exercise and at 20 minutes of recovery. Differences in cortisol concentration were assessed via multivariate analysis of variance (alpha = 0.05) Tukey post hoc analysis when indicated. During the highest-intensity exercise session, cortisol was significantly higher at 59 minutes of exercise (p = 0.004) and at 20 minutes of recovery (p = 0.016) than at those same time points during the resting control session. No significant differences in cortisol concentration were noted among resting, low-, and moderate-intensity exercise. Exercise <40 minutes in duration elicited no significant differences at any intensity. These data indicate that only exercise of high intensity and long duration results in significant elevations of salivary cortisol.  相似文献   

17.
The surface electromyogram (EMG) from active muscle and oxygen uptake (VO2) were studied simultaneously to examine changes of motor unit (MU) activity during exercise tests with different ramp increments. Six male subjects performed four exhausting cycle exercises with different ramp slopes of 10, 20, 30 and 40 W.min-1 on different days. The EMG signals taken from the vastus lateralis muscle were stored on a digital data recorder and converted to obtain the integrated EMG (iEMG). The VO2 was measured, with 20-s intervals, by the mixing chamber method. A non-linear increase in iEMG against work load was observed for each exercise in all subjects. The break point of the linear relationship of iEMG was determined by the crossing point of the two regression lines (iEMGbp). Significant differences were obtained in the exercise intensities corresponding to maximal oxygen uptake (VO2max) and the iEMGbp between 10 and 30, and 10 and 40 W.min-1 ramp exercises (P < 0.05). However, no significant differences were obtained in VO2max and VO2 corresponding to the iEMGbp during the four ramp exercises. With respect to the relationship between VO2 and exercise intensity during the ramp increments, the VO2-exercise intensity slope showed significant differences only for the upper half (i.e. above iEMGbp). These results demonstrated that the VO2max and VO2 at which a nonlinear increase in iEMG was observed were not varied by the change of ramp slopes but by the exercise intensity corresponding to VO2max and the iEMGbp was varied by the change of ramp slopes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography – EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<−0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test.  相似文献   

19.
The present study investigated the effect of exercise training at different intensities on fat oxidation in obese men. Twenty-four healthy male obese subjects were randomly divided in either a low- [40% maximal oxygen consumption (VO(2 max))] or high-intensity exercise training program (70% VO(2 max)) for 12 wk, or a non-exercising control group. Before and after the intervention, measurements of fat metabolism at rest and during exercise were performed by using indirect calorimetry, [U-(13)C]palmitate, and [1,2-(13)C]acetate. Furthermore, body composition and maximal aerobic capacity were measured. Total fat oxidation did not change at rest in any group. During exercise, after low-intensity exercise training, fat oxidation was increased by 40% (P < 0.05) because of an increased non-plasma fatty acid oxidation (P < 0.05). High-intensity exercise training did not affect total fat oxidation during exercise. Changes in fat oxidation were not significantly different among groups. It was concluded that low-intensity exercise training in obese subjects seemed to increase fat oxidation during exercise but not at rest. No effect of high-intensity exercise training on fat oxidation could be shown.  相似文献   

20.
MicroRNAs (miRNAs) have emerged as important players in the regulation of gene expression, being involved in most biological processes examined to date. The proposal that miRNAs are primarily involved in the stress response of the cell makes miRNAs ideally suited to mediate the response of skeletal muscle to changes in contractile activity. Although the field is still in its infancy, the studies presented in this review highlight the promise that miRNAs will have an important role in mediating the response and adaptation of skeletal muscle to various modes of exercise. The roles of miRNAs in satellite cell biology, muscle regeneration, and various myopathies are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号