首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomeric guanine-rich sequence can adopt quadruplex structures that are important for their biological role in chromosomal stabilisation. G quartets are characterised by the cyclic hydrogen bonding of four guanine bases in a coplanar arrangement and their stability is ion-dependent. In this work we compare the stability of [d(TGGGT)]4 and [d(T*GGGT)]4 quadruplexes. The last one contains a modified thymine, where the hydroxyl group substitutes one hydrogen atom of the methyl group of the thymine in the [d(TGGGT)]4 sequence. We used a combination of spectroscopic, calorimetric and computational techniques to characterise the G-quadruplex formation. NMR and CD spectra of [d(T*GGGT)]4 were characteristic of parallel-stranded, tetramolecular quadruplex. CD and DSC melting experiments reveal that [d(T*GGGT)]4 is less stable that unmodified quadruplex. Molecular models suggest possible explanation for the observed behaviour.  相似文献   

2.
Lead is unusually effective in sequence-specific folding of DNA   总被引:4,自引:0,他引:4  
DNA quadruplex structures based on the guanine quartet are typically stabilized by monovalent cations such as K(+), Na(+), or NH(+)(3). Certain divalent cations can also induce quadruplex formation, such as Sr(2+). Here we show that Pb(2+) binds with unusually high affinity to the thrombin binding aptamer, d(GGTTGGTGTGGTTGG), inducing a unimolecular folded structure. At micromolar concentrations the binding is stoichiometric, and a single lead cation suffices to fold the aptamer. The lead-induced changes in UV and CD spectra are characteristic of folded quadruplexes, although the long wavelength CD maximum occurs at 312 nm rather than the typical value of 293 nm. The one-dimensional exchangeable proton NMR spectrum shows resonances expected for imino protons involved in guanine quartet base-pairing. Furthermore, two-dimensional NMR experiments reveal NOE contacts typically seen in folded structures formed by guanine quartets, such as the K(+) form of the thrombin aptamer. Only sequences capable of forming guanine quartets appear to bind Pb(+2) tightly and change conformation. This sequence-specific, tight DNA binding may be relevant to possible genotoxic effects of lead in the environment.  相似文献   

3.
NMR solution structure of a parallel LNA quadruplex   总被引:3,自引:2,他引:1  
The solution structure of a locked nucleic acid (LNA) quadruplex, formed by the oligomer d(TGGGT), containing only conformationally restricted LNA residues is reported. NMR and CD spectroscopy, as well as molecular dynamics and mechanic calculations, has been used to characterize the complex. The molecule adopts a parallel stranded conformation with a 4-fold rotational symmetry, showing a right-handed helicity and the guanine residues in an almost planar conformation with three well-defined G-tetrads. The thermal stability of Q-LNA has been found to be comparable with that of [r(UGGGU)]4, while a Tm increment of 20°C with respect to the corresponding DNA quadruplex structure [d(TGGGT)]4 has been observed. The structural features of the LNA quadruplex reported here may open new perspectives for the biological application of LNAs as novel versatile tools to design aptamer or catalyst oligonucleotides.  相似文献   

4.
The paramagnetic metal ion Mn2+ has been used to probe the electrostatic potentials of a DNA quadruplex that has two quartets with an overall fold of the chair type. A quadruplex with a basket type structure has also been examined. The binding of the paramagnetic ion manganese to these quadruplex DNAs has been investigated by solution state electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. The EPR results indicate that the DNA aptamer, d(GGTTGGTGTGGTTGG), binds two manganese ions and that the binding constants for each of these sites is approximately 10(5) M-1. The NMR results indicate that the binding sites of the manganese are in the narrow grooves of this quadruplex DNA. The binding sites of the DNA quadruplex formed by dimers of d(GGGGTTTTGGGG) which forms a basket structure are also in the narrow groove. These results indicate that the close approach of phosphates in the narrow minor grooves of the quadruplex structures provide strong binding sites for the manganese ions and that EPR and NMR monitoring of manganese binding can be used to distinguish between the different types of quadruplex structures.  相似文献   

5.
Quadruplexes are involved in the regulation of gene expression and are part of telomeres at the ends of chromosomes. In addition, they are useful in therapeutic and biotechnological applications, including nucleic acid diagnostics. In the presence of K+ ions, two 15-mer sequences d(GGTTGGTGTGGTTGG) (thrombin binding aptamer) and d(GGGTGGGTGGGTGGG) (G3T) fold into antiparallel and parallel quadruplexes, respectively. In the present study, we measured the fluorescence intensity of one or more 2-aminopurine or 6-methylisoxanthopterin base analogs incorporated at loop-positions of quadruplex forming sequences to develop a detection method for DNA sequences in solution. Before quadruplex formation, the fluorescence is efficiently quenched in all cases. Remarkably, G3T quadruplex formation results in emission of fluorescence equal to that of a free base in all three positions. In the case of thrombin binding aptamer, the emission intensity depends on the location of the fluorescent nucleotides. Circular dichroism studies demonstrate that the modifications do not change the overall secondary structure, whereas thermal unfolding experiments revealed that fluorescent analogs significantly destabilize the quadruplexes. Overall, these studies suggest that quadruplexes containing fluorescent nucleotide analogs are useful tools in the development of novel DNA detection methodologies.  相似文献   

6.
Energetic basis of molecular recognition in a DNA aptamer   总被引:1,自引:0,他引:1  
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid.  相似文献   

7.
The remarkable structural polymorphism of quadruplex-forming sequences has been a considerable impediment in the elucidation of quadruplex folds. Sequence modifications have commonly been used to perturb and purportedly select a particular form out of the ensemble of folds for nuclear magnetic resonance (NMR) or X-ray crystallographic analysis. Here we report a simple chromatographic technique that separates the individual folds without need for sequence modification. The sequence d(GGTGGTGGTGGTTGTGGTGGTGGTGG) forms a compact quadruplex according to a variety of common biophysical techniques. However, NMR and chromatography showed that this oligonucleotide produces at least eight monomeric quadruplex species that interconvert very slowly at room temperature. We have used a combination of spectroscopic, hydrodynamic and thermodynamic techniques to evaluate the physicochemical properties of the mixture and the individual species. These species have almost identical thermodynamic, hydrodynamic and electrophoretic properties, but significantly different NMR and circular dichroism (CD) spectra, as well as kinetic stability. These results demonstrate that simple standard low-resolution techniques cannot always be used for quadruplex fold determination or quality control purposes, and that simple thermodynamic analysis does not directly provide interpretable thermodynamic parameters.  相似文献   

8.
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

9.
The thrombin-binding aptamer d(GGTTGGTGTGGTTGG) (TBA) is an efficient tool for the inhibition of thrombin function. We have studied conformations and thermodynamic stability of a number of modified TBA oligonucleotides containing thiophosphoryl substitution at different internucleotide sites. Using circular dichroism such modifications were found not to disrupt the antiparallel intramolecular quadruplex specific for TBA. Nevertheless, the presence of a single thiophosphoryl bond between two G-quartet planes led to a significant decrease in the quadruplex thermostability. On the contrary, modifications in each of the loop regions either stabilized an aptamer structure or did not reduce its stability. According to the thrombin time test, the aptamer with thio-modifications in both TT loops (LL11) exhibits the same antithrombin efficiency as the original TBA. This aptamer shows better stability against DNA nuclease compared to that of TBA. We conclude that such thio-modification patterns are very promising for the design of anticoagulation agents.  相似文献   

10.
1H-NMR, CD, and UV spectroscopy have been used to investigate the structure of PNA/DNA chimeras forming quadruplex structures. In particular, we synthesized 5'TGGG3'-t (1) and 5'TGG3'-gt (2), where lower and upper case letters indicate PNA and DNA residues, respectively. CD spectrum and all NMR data of (1) are typical of quadruplexes involving four parallel strands. UV melting profile of (1) indicates that its thermal stability is quite similar to that observed for the reference structure [d(TGGGT)]4. 1H-NMR spectrum for 5'TGG3'-gt (2) shows that this oligonucleotide is not able to fold into a single, well-defined species.  相似文献   

11.
In this work, we report the solution structure, thermodynamic studies, and the pharmacological properties of a new modified thrombin binding aptamer (TBA) containing a G-LNA residue, namely d(5'-GGTTGGTGTGGTTGg-3'), where upper case and lower case letters represent DNA and LNA residues, respectively. NMR and CD spectroscopy, as well as molecular dynamics and mechanic calculations, has been used to characterize the three-dimensional structure. The modified oligonucleotide is characterized by a chair-like structure consisting of two G-tetrads connected by three edge-wise TT, TGT, and TT loops. d(5'-GGTTGGTGTGGTTGg-3') is characterized by the same folding of TBA, being two strands parallel to each other and two strands oriented in opposite manner. This led to a syn-anti-syn-anti and anti-syn-anti-syn arrangements of the Gs in the two tetrads. d(5'-GGTTGGTGTGGTTGg-3') possesses an anticoagulant activity, even if decreased with respect to the TBA.  相似文献   

12.
Majhi PR  Qi J  Tang CF  Shafer RH 《Biopolymers》2008,89(4):302-309
This study addresses the temperature dependence of the enthalpy of formation for several unimolecular quadruplexes in the presence of excess monovalent salt. We examined a series of biologically significant guanine-rich DNA sequences: thrombin binding aptamer (TBA) (d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), PS2.M, a catalytically active aptamer (d(GTG(3)TAG(3)CG(3)T(2)G(2))), and the human telomere repeat (HT) (d(AG(3)(T(2)AG(3))(3))). Using CD spectra and UV melting, we confirmed the presence of quadruplex structures and established the temperature range in which quadruplex conformation is stable. We then performed ITC experiments, adding DNA to a solution containing excess NaCl or KCl. In this approach, only several additions are made, and only the enthalpy of quadruplex formation is measured. This measurement was repeated at different temperatures to determine the temperature dependence of the enthalpy change accompanying quadruplex formation. To control for the effect of nonspecific salt interactions during DNA folding, we repeated the experiment by replacing the quadruplex-forming sequences with a similar but nonfolding sequence. Dilution enthalpies were also subtracted to obtain the final enthalpy value involving only the quadruplex folding process. For all sequences studied, quadruplex formation was exothermic but with an increasing magnitude with increasing temperature. These results are discussed in terms of the change in heat capacity associated with quadruplex formation.  相似文献   

13.
A physico-chemical characterization, based on NMR and CD spectroscopy, of quadruplexes formed by the oligonucleotide d(TGGGT), where two or three Gs are substituted by 8-bromo-2'-deoxyguanosine residues (dGBr), is reported. The oligonucleotidic sequences d(TGBr GBr GT), d(TGBr GGBr T), d(TGGBr GBr T), and d(TGBr GBr GBr T) have been synthesized. Only sequences d(TGBr GGBr T) and d(TGBr GBr GT) were able to fold into a well defined quadruplex structure, and their CD profiles and thermal stabilities turned out to be very different from those observed for the natural counterpart, indicating that the 8-Br-dG residues dramatically affect the structure of the quadruplex.  相似文献   

14.
Thrombin binding aptamer is a DNA 15-mer which forms a G-quadruplex structure and possess promising anticoagulant properties due to specific interactions with thrombin. Herein we present the influence of a single 2'-C-piperazino-UNA residue and UNA residues incorporated in several positions on thermodynamics, kinetics and biological properties of the aptamer. 2'-C-Piperazino-UNA is characterized by more efficient stabilization of quadruplex structure in comparison to regular UNA and increases thermodynamic stability of TBA by 0.28-0.44 kcal/mol in a position depending manner with retained quadruplex topology and molecularity. The presence of UNA-U in positions U3, U7, and U12 results in the highest stabilization of G-quadruplex structure (ΔΔG(37)(°)=-1.03kcal/mol). On the contrary, the largest destabilization mounting to 1.79 kcal/mol was observed when UNA residues were placed in positions U7, G8, and U9. Kinetic studies indicate no strict correlation between thermodynamic stability of modified variants and their binding affinity to thrombin. Most of the studied variants bind thrombin, albeit with decreased affinity in reference to unmodified TBA. Thrombin time assay studies indicate three variants as being as potent as TBA in fibrin clotting inhibition.  相似文献   

15.
The circular dichroism, CD, spectra of the telomere repeats of vertebrates, d(TTAGGG), indicate that parallel type quadruplex structures or disordered single-stranded structures are formed in low salt. Anti-parallel quadruplex structures are favored in the presence of high concentrations, 140 mM, of sodium. External loop, also known as propeller, parallel type structures are favored in the presence of high concentrations, 100 mM, of potassium in the presence of either 5 or 140 mM sodium. The cation dependence of the CD spectra of the vertebrate telomere repeat DNAs is distinctly different from that of the telomere repeats of Tetrahymena and Oxytricha as well as that of the thrombin binding aptamer. These results indicate that the external loop structures may be present in vertebrate telomeres under the conditions of high potassium and low sodium concentration found in nuclei.  相似文献   

16.
17.
Using CD and NMR, we determined the structure of an RNA oligomer, r(GGAGGUUUUGGAGG) (R14), comprising two GGAGG segments joined by a UUUU segment. A modified quadruplex structure was observed for r(GGAGGUUUUGGAGG) in solution even in the absence of K(+). An unusually stable dimeric RNA quadruplex architecture formed from two strands of r(GGAGGUUUUGGAGG) at low K(+) concentration is reported here. In each strand of r(GGAGGUUUUGGAGG), two sets of successive turns in the GGAGG segments and turns at both ends of the UUUU loops drive four G-G steps to align in a parallel manner, a core with two stacked G-tetrads being formed. Two adenine bases bind to two edges of one G:G:G:G tetrad through the sheared G:A mismatch augmenting the tetrad into a G:G(:A):G:G(:A) hexad. Thus, one molecule of r(GGAGGUUUUGGAGG) folds into a modified quadruplex comprising a G:G:G:G tetrad, a UUUU double-chain reversal loop and a G:G(:A):G:G(:A) hexad. Two such molecules further associate by stacking through the dimeric hexad-hexad interface with a rotational symmetry. The ribose rings of most nucleotides take S (close to C2'-endo) puckering, which is unusual for an RNA. K(+) can increase the stability of this quadruplex structure; the number of bound K(+) was estimated from the results of the titration experiment. Besides G:G and G:A mismatches, a network of hydrogen bonds including O4'-NH(2) and C-H..O hydrogen bonds, and the extensive base stacking contribute to the high thermodynamic stability of R14. Our results could provide the stereochemical and thermodynamic basis for elucidating the biological role of the GGAGG-containing RNA segments abundantly existing in various RNAs. Relevance to quadruplex-mediated mRNA-FMRP binding and HIV-1 genome RNA dimerization is discussed.  相似文献   

18.
Guanine-rich DNA sequences are widely dispersed in the eukaryotic genome and are abundant in regions with relevant biological significance. They can form quadruplex structures stabilized by guanine quartets. These structures differ for number and strand polarity, loop composition, and conformation. We report here the syntheses and the structural studies of a set of interconnected d(TG(4)T) fragments which are tethered, with different orientations, to a tetra-end-linker in an attempt to force the formation of specific four-stranded DNA quadruplex structures. Two synthetic strategies have been used to obtain oligodeoxyribonucleotide (ODN) strands linked with their 3'- or 5'-ends to each of the four arms of the linker. The first approach allowed the synthesis of tetra-end-linked ODN (TEL-ODN) containing the four ODN strands with a parallel orientation, while the latter synthetic pathway led to the synthesis of TEL-ODNs each containing antiparallel ODN pairs. The influence of the linker at 3'- or 5'-ODN, on the quadruplex typology and stability, in the presence of sodium or potassium ions, has been investigated by circular dichroism (CD), CD thermal denaturation, (1)H NMR experiments at variable temperature, and molecular modeling. All synthesized TEL-ODNs formed parallel G-quadruplex structures. Particularly, the TEL-ODN containing all parallel ODN tracts formed very stable parallel G-quadruplex complexes, whereas the TEL-ODNs containing antiparallel ODN pairs led to relatively less stable parallel G-quadruplexes. The molecular modeling data suggested that the above antiparallel TEL-ODNs can adopt parallel G-quadruplex structures thanks to a considerable folding of the tetra-end-linker around the whole quadruplex scaffold.  相似文献   

19.
Majhi PR  Shafer RH 《Biopolymers》2006,82(6):558-569
In the presence of certain metal ions, DNA and RNA can form guanine quadruplex structures, which have been proposed to play a functional role in a variety of biological processes. An 18-nucleotide DNA oligomer, PS2.M, d(GTG3TAG3CG3T2G2), was previously reported to bind hemin and the resulting complex exhibited peroxidase activity. It was proposed that PS2.M folds unimolecularly into an antiparallel quadruplex with unusual, single-base loops and terminal guanines positioned in adjacent quartets. Here we describe structural and stability properties of PS2.M alone in different buffers and metal ions, using gel electrophoresis, circular dichroism (CD), ultraviolet (UV)-visible spectroscopies, and one-dimensional 1H nuclear magnetic resonance (NMR). Native gel behavior of PS2.M in the presence of either Na+ or Pb2+ suggests the formation of unimolecular structures but, in the presence of K+, both unimolecular and multistranded structures are observed. In the presence of Pb2+ ions, PS2.M forms a unimolecular quadruplex containing three guanine quartets. CD titrations reveal that binding of Pb2+ ions to PS2.M is stoichiometric, and a single lead cation suffices to fully fold PS2.M. The PS2.M-Na+ system also forms a similar unimolecular quadruplex. In the presence of K+, the PS2.M-K+ system forms mixed species. With increasing time and PS2.M concentration, the contribution of unimolecular species decreases while that of multimolecular species increases, and this behavior is independent of buffer media. These results suggest that the catalytically active form, studied in the presence of K+, may be a parallel, multistranded quadruplex rather than an antiparallel, unimolecular quadruplex.  相似文献   

20.
We report the single-crystal X-ray structure for the complex of the bisacridine bis-(9-aminooctyl(2-(dimethylaminoethyl)acridine-4-carboxamide)) with the oligonucleotide d(CGTACG)(2) to a resolution of 2.4A. Solution studies with closed circular DNA show this compound to be a bisintercalating threading agent, but so far we have no crystallographic or NMR structural data conforming to the model of contiguous intercalation within the same duplex. Here, with the hexameric duplex d(CGTACG), the DNA is observed to undergo a terminal cytosine base exchange to yield an unusual guanine quadruplex intercalation site through which the bisacridine threads its octamethylene linker to fuse two DNA duplexes. The 4-carboxamide side-chains form anchoring hydrogen-bonding interactions with guanine O6 atoms on each side of the quadruplex. This higher-order DNA structure provides insight into an unexpected property of bisintercalating threading agents, and suggests the idea of targeting such compounds specifically at four-way DNA junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号