首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The specification of distinct cell fates in multicellular organisms is a fundamental process in developmental biology. The Arabidopsis root epidermis, which consists of root-hair cells and non-hair cells, provides a useful model system for studying cell fate specification. In this tissue, the cell fates are determined by their relative position to the underlying cortical cells, and many genes have been identified that regulate this position-dependent cell fate specification. Recent studies using genetic, molecular, and biochemical approaches have shed new light on this process and revealed a complex network of interacting and interdependent components. In particular, a novel regulatory circuit has recently been identified, which includes a lateral inhibition pathway and a feedback loop that enables intercellular communication and ensures that two distinct cell types arise in an appropriate pattern. This regulatory circuit is also influenced by a positional signaling pathway which includes the SCRAMBLED leucine-rich repeat receptor kinase. The studies of cell fate specification in the Arabidopsis root epidermis provide new insights into the molecular strategies used to define distinct cell types in plants.  相似文献   

2.
3.
4.
Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.  相似文献   

5.
Differentiation in plant epidermal cells   总被引:6,自引:0,他引:6  
The plant epidermis is a multifunctional tissue playing important roles in water relations, defence and pollinator attraction. This range of function is performed by a number of different types of specialized cells, which differentiate from the early undifferentiated epidermis in adaptively significant patterns and frequencies. These various cells show different degrees of morphological specialization, but there is evidence to suggest that even the less specialized cell types may require certain signals to ensure their correct differentiation and patterning. Epidermal cells may potentially adopt certain fates through a cell lineage based mechanism or a cell interaction mechanism. Work on stomatal development has focused on the cell lineage mechanism and work on trichome differentiation has focused on the cell interaction model. Recent work on the Arabidopsis trichome suggests that interactions between neighbouring cells reinforce initial differences, possibly in levels of gene expression or cell cycle stage, to commit cells to different developmental programmes. In this review these mechanisms are explored in a number of specialized cell types and the further interactions between different developmental programmes are analysed. It is in these interactions between differentiating cells adopting different cell fates that the key to the patterning of a multifunctional tissue must lie.  相似文献   

6.
7.
8.
9.
Unraveling the knots in plant development.   总被引:17,自引:0,他引:17  
  相似文献   

10.
Human epidemiological and animal laboratory studies show that suboptimal environments in the womb and during early neonatal life alter development and predispose the individual to lifelong health problems. The concept of the developmental origins of adult diseases has become well accepted because of the compelling animal studies that have precisely defined the outcomes of specific exposures such as nutrient restriction, overfeeding during pregnancy, maternal stress, and exogenously administered glucocorticoids. This review focuses on the use of animal models to evaluate exposures, mechanisms, and outcomes involved in developmental programming of hypertension, diabetes, obesity, and altered pituitary-adrenal function in offspring in later life. Ten principles of developmental programming are described as fundamental, regardless of the exposure during development and the physiological system involved in the altered outcome. The 10 principles are discussed in the context of the physiological systems involved and the animal model studies that have been conducted to evaluate exposures, mechanisms, and outcomes. For example, the fetus responds to challenges such as hypoxia and nutrient restriction in ways that help to ensure its survival, but this "developmental plasticity" may have long-term consequences that may not be beneficial in adult life. To understand developmental programming, which represents the interaction of nature and nurture, it is necessary to integrate whole animal systems physiology, in vitro cellular biology, and genomic and proteomic approaches, and to use animal models that are carefully characterized and appropriate for the questions under study. Animal models play an important role in this evaluation because they permit combined in vivo and in vitro study at different critical time windows during the exposure and the ensuing developmental responses.  相似文献   

11.
12.
Early embryogenesis has been examined experimentally in several echinoderm and hemichordate classes. Although these studies suggest that the mechanisms which underlie regional specification have been highly conserved within the echinoderm + hemichordate clade, nothing is known about these mechanisms in several other echinoderm classes, including the Ophiuroidea. In this study, early embryogenesis was examined in a very little studied animal, the ophiuroid Ophiopholis aculeata. In O. aculeata, the first two cleavage planes do not coincide with the animal-vegetal axis but rather form approximately 45 degrees off this axis. A fate map of the early embryo was constructed using microinjected lineage tracers. Most significantly, this fate map indicates that there is a major segregation of ectodermal from endomesodermal fates at first cleavage. The distribution of developmental potential in the early embryo was also examined by isolating different regions of the early embryo and following these isolates though larval development. These analyses indicate that endomesodermal developmental potential segregates unequally at first, second, and third cleavage in O. aculeata. These results provide insight into the mechanisms of regional specification in O. aculeata and yield new material for the study of the evolution of echinoderm development.  相似文献   

13.
Villava CE  Arellano-Torres A  Navarro RE  Maldonado E 《BioTechniques》2007,43(3):313-4, 316, 318-20 passim
The zebrafish is a model organism used to study organogenesis during vertebrate development; however epidermis development has been the focus of only a few studies. Thus, new methodologies to highlight and study epidermal cells could be valuable to deepen our understanding of skin development. Large-scale mutagenic screenings have already identified many zebrafish mutants, which are models for human developmental diseases, however only four epidermis mutants have been isolated. Novel screening techniques are needed to improve this collection. We designed and tested a novel freeze-crack technique to obtain, fix, and stain epidermal cells from 5 days postfertilization zebrafish larvae. Using commercially available fluorescent markers and differential interference contrast (DIC) microscopy, we were able to label and highlight subcellular structures such as microridges, cell boundaries, nuclei, and the Golgi complex from epidermis cells. Acquiring and processing epidermis samples from 15 to 75 larvae takes about 2-4 h, respectively. Therefore this method could be used as part of large-scale screenings. In addition, we present a more extensive protocol for antibody staining, which could be employed for more specific studies.  相似文献   

14.
Different fates of neural stem/progenitor cells (NSPCs) and their progeny are determined by the gene regulatory network, where a chromatin-remodeling complex affects synergy with other regulators. Here, we review recent research progress indicating that the BRG1/BRM-associated factor (BAF) complex plays an important role in NSPCs during neural development and neural developmental disorders. Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation, which can also lead to various diseases in humans. We discussed BAF complex subunits and their main characteristics in NSPCs. With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs, we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs. Considering recent progress in these research areas, we suggest that three approaches should be used in investigations in the near future. Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders. More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.  相似文献   

15.
Is a mosaic embryo also a mosaic of communication compartments?   总被引:2,自引:0,他引:2  
We have studied the pathways of cell communication in embryos of the mollusc Lymnaea stagnalis in which the developmental fate of a cell or a group of cells is known from cell lineage studies. We iontophoretically injected Lucifer Yellow CH and followed the spread of fluorescence between cells interconnected via gap junctions. In early stages all blastomeres appear to be dye-coupled, but later on communication is restricted within compartments. The pattern of cell communication corresponds with the development of compartments with specific cell fates. Dye-spread is limited by communication boundaries which completely or mostly prevent the passage of dye to adjacent compartments with different developmental fates. These boundaries appear progressively during development. Our results suggest that, during the development of Lymnaea, the progressive changes in the pattern of dye spread correspond with the progressive restrictions of the developmental fates of individual cells or groups of cells. We conclude that changes in the pattern of cell communication and in the appearance of communication compartments are not exclusive features of regulative embryos.  相似文献   

16.
Caulobacter crescentus uses a multi-layered system of oscillating regulators to program different developmental fates into each daughter cell at division. This is achieved by superimposing gene expression, subcellular localization, phosphorylation, and regulated proteolysis to form a complex regulatory network that integrates chromosome replication, segregation, polar differentiation, and cytokinesis. In this review, we outline the current state of research in the field of Caulobacter development, emphasizing new findings that elaborate how the developmental program is modulated by factors such as the environment or the metabolic state of the cell.  相似文献   

17.
Cell lineages during development of ascidian embryos were analyzed by injecting horseradish peroxidase as a tracer enzyme into identified cells of the 16-cell and 32-cell stage embryos of Halocynthia roretzi. Most of the blastomeres of these embryos developed more kinds of tissues than have hitherto been reported, and therefore, the developmental fates of each blastomere are more complex. It has been thought that every blastomere of the 64-cell stage ascidian embryo gives rise to only one kind of tissues, but the finding that the several blastomeres at the 32-cell stage developed into at least three different kinds of tissues, clearly indicates that the stage at which the fates of every blastomere are determined to one tissue is later than the 64-cell stage. The results also clearly demonstrate that muscle cells are derived not only from B-line cells (B5.1, B5.2, B6.3, and B6.4) but also from A-line cells (A5.2 and A6.4) and b-line cells (b5.3 and b6.5). Based on the present analysis as well as other studies, complete cell lineages of muscle cells up to their terminal differentiation have been proposed. In addition, lineages of nervous system, notochord, and epidermis are also discussed.  相似文献   

18.
During embryogenesis, cell division must be spatially and temporally regulated with respect to other developmental processes. Leech embryos undergo a series of unequal and asynchronous cleavages to produce individually recognizable cells whose lineages, developmental fates and cell cycle properties have been characterized. Thus, leech embryos provide an opportunity to examine the regulation of cell division at the level of individual well-characterized cells within a community of different types of cells. Isolation of leech homologues of some of the highly conserved regulators of the cell division cycle, and characterization of their patterns of maternal and zygotic expression, indicate that the cell divisions of early leech embryos are regulated by cell type-specific mechanisms. These studies with leech embryos contribute to the emerging appreciation of the diverse mechanisms by which animals regulate cell division during early development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号