首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimThe aim of the present study is to evaluate and quantify the bias of competing risks in an Italian oncologic cohort comparing results from different statistical analysis methods.BackgroundCompeting risks are very common in randomized clinical trials and observational studies, in particular oncology and radiotherapy ones, and their inappropriate management causes results distortions widely present in clinical scientific articles.Materials and methodsThis is a single-institution phase II trial including 41 patients affected by prostate cancer and undergoing radiotherapy (IMRT-SIB) at the University Hospital of Udine.Different outcomes were considered: late toxicities, relapse, death.Death in the absence of relapse or late toxicity was considered as a competing event.ResultsThe Kaplan Meier method, compared to cumulative incidence function method, overestimated the probability of the event of interest (toxicity and biochemical relapse) and of the competing event (death without toxicity/relapse) by 9.36%. The log-rank test, compared to Gray's test, overestimated the probability of the event of interest by 5.26%.The Hazard Ratio's and cause specific hazard's Cox regression are not directly comparable to subdistribution hazard's Fine and Gray's modified Cox regression; nonetheless, the FG model, the best choice for prognostic studies with competing risks, found significant associations not emerging with Cox regression.ConclusionsThis study confirms that using inappropriate statistical methods produces a 10% overestimation in results, as described in the literature, and highlights the importance of taking into account the competing risks bias.  相似文献   

2.
Summary In many instances, a subject can experience both a nonterminal and terminal event where the terminal event (e.g., death) censors the nonterminal event (e.g., relapse) but not vice versa. Typically, the two events are correlated. This situation has been termed semicompeting risks (e.g., Fine, Jiang, and Chappell, 2001 , Biometrika 88, 907–939; Wang, 2003 , Journal of the Royal Statistical Society, Series B 65, 257–273), and analysis has been based on a joint survival function of two event times over the positive quadrant but with observation restricted to the upper wedge. Implicitly, this approach entertains the idea of latent failure times and leads to discussion of a marginal distribution of the nonterminal event that is not grounded in reality. We argue that, similar to models for competing risks, latent failure times should generally be avoided in modeling such data. We note that semicompeting risks have more classically been described as an illness–death model and this formulation avoids any reference to latent times. We consider an illness–death model with shared frailty, which in its most restrictive form is identical to the semicompeting risks model that has been proposed and analyzed, but that allows for many generalizations and the simple incorporation of covariates. Nonparametric maximum likelihood estimation is used for inference and resulting estimates for the correlation parameter are compared with other proposed approaches. Asymptotic properties, simulations studies, and application to a randomized clinical trial in nasopharyngeal cancer evaluate and illustrate the methods. A simple and fast algorithm is developed for its numerical implementation.  相似文献   

3.
Censored quantile regression models, which offer great flexibility in assessing covariate effects on event times, have attracted considerable research interest. In this study, we consider flexible estimation and inference procedures for competing risks quantile regression, which not only provides meaningful interpretations by using cumulative incidence quantiles but also extends the conventional accelerated failure time model by relaxing some of the stringent model assumptions, such as global linearity and unconditional independence. Current method for censored quantile regressions often involves the minimization of the L1‐type convex function or solving the nonsmoothed estimating equations. This approach could lead to multiple roots in practical settings, particularly with multiple covariates. Moreover, variance estimation involves an unknown error distribution and most methods rely on computationally intensive resampling techniques such as bootstrapping. We consider the induced smoothing procedure for censored quantile regressions to the competing risks setting. The proposed procedure permits the fast and accurate computation of quantile regression parameter estimates and standard variances by using conventional numerical methods such as the Newton–Raphson algorithm. Numerical studies show that the proposed estimators perform well and the resulting inference is reliable in practical settings. The method is finally applied to data from a soft tissue sarcoma study.  相似文献   

4.
Separate Cox analyses of all cause-specific hazards are the standard technique of choice to study the effect of a covariate in competing risks, but a synopsis of these results in terms of cumulative event probabilities is challenging. This difficulty has led to the development of the proportional subdistribution hazards model. If the covariate is known at baseline, the model allows for a summarizing assessment in terms of the cumulative incidence function. black Mathematically, the model also allows for including random time-dependent covariates, but practical implementation has remained unclear due to a certain risk set peculiarity. We use the intimate relationship of discrete covariates and multistate models to naturally treat time-dependent covariates within the subdistribution hazards framework. The methodology then straightforwardly translates to real-valued time-dependent covariates. As with classical survival analysis, including time-dependent covariates does not result in a model for probability functions anymore. Nevertheless, the proposed methodology provides a useful synthesis of separate cause-specific hazards analyses. We illustrate this with hospital infection data, where time-dependent covariates and competing risks are essential to the subject research question.  相似文献   

5.
Time‐dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time‐fixed covariates. This study briefly recalls the different types of time‐dependent covariates, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time‐dependent covariates are to be included in the modeling process, then it is still possible to estimate cause‐specific hazards but prediction of the cumulative incidences and survival probabilities based on these is no longer feasible. This article aims at providing some possible strategies for dealing with these prediction problems. In a multi‐state framework, a first approach uses internal covariates to define additional (intermediate) transient states in the competing risks model. Another approach is to apply the landmark analysis as described by van Houwelingen [Scandinavian Journal of Statistics 2007, 34 , 70–85] in order to study cumulative incidences at different subintervals of the entire study period. The final strategy is to extend the competing risks model by considering all the possible combinations between internal covariate levels and cause‐specific events as final states. In all of those proposals, it is possible to estimate the changes/differences of the cumulative risks associated with simple internal covariates. An illustrative example based on bone marrow transplant data is presented in order to compare the different methods.  相似文献   

6.
Regression modeling of semicompeting risks data   总被引:1,自引:0,他引:1  
Peng L  Fine JP 《Biometrics》2007,63(1):96-108
Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event without covariates. In this article, we incorporate covariates and formulate their effects on the survival function of the intermediate event via a functional regression model. To accommodate informative censoring, a time-dependent copula model is proposed in the observable region of the data which is more flexible than standard parametric copula models for the dependence between the events. The model permits estimation of the marginal distribution under weaker assumptions than in previous work on competing risks data. New nonparametric estimators for the marginal and dependence models are derived from nonlinear estimating equations and are shown to be uniformly consistent and to converge weakly to Gaussian processes. Graphical model checking techniques are presented for the assumed models. Nonparametric tests are developed accordingly, as are inferences for parametric submodels for the time-varying covariate effects and copula parameters. A novel time-varying sensitivity analysis is developed using the estimation procedures. Simulations and an AIDS data analysis demonstrate the practical utility of the methodology.  相似文献   

7.
Zheng Y  Cai T  Jin Y  Feng Z 《Biometrics》2012,68(2):388-396
To develop more targeted intervention strategies, an important research goal is to identify markers predictive of clinical events. A crucial step toward this goal is to characterize the clinical performance of a marker for predicting different types of events. In this article, we present statistical methods for evaluating the performance of a prognostic marker in predicting multiple competing events. To capture the potential time-varying predictive performance of the marker and incorporate competing risks, we define time- and cause-specific accuracy summaries by stratifying cases based on causes of failure. Such definition would allow one to evaluate the predictive accuracy of a marker for each type of event and compare its predictiveness across event types. Extending the nonparametric crude cause-specific receiver operating characteristics curve estimators by Saha and Heagerty (2010), we develop inference procedures for a range of cause-specific accuracy summaries. To estimate the accuracy measures and assess how covariates may affect the accuracy of a marker under the competing risk setting, we consider two forms of semiparametric models through the cause-specific hazard framework. These approaches enable a flexible modeling of the relationships between the marker and failure times for each cause, while efficiently accommodating additional covariates. We investigate the asymptotic property of the proposed accuracy estimators and demonstrate the finite sample performance of these estimators through simulation studies. The proposed procedures are illustrated with data from a prostate cancer prognostic study.  相似文献   

8.
In many clinical trials, multiple time‐to‐event endpoints including the primary endpoint (e.g., time to death) and secondary endpoints (e.g., progression‐related endpoints) are commonly used to determine treatment efficacy. These endpoints are often biologically related. This work is motivated by a study of bone marrow transplant (BMT) for leukemia patients, who may experience the acute graft‐versus‐host disease (GVHD), relapse of leukemia, and death after an allogeneic BMT. The acute GVHD is associated with the relapse free survival, and both the acute GVHD and relapse of leukemia are intermediate nonterminal events subject to dependent censoring by the informative terminal event death, but not vice versa, giving rise to survival data that are subject to two sets of semi‐competing risks. It is important to assess the impacts of prognostic factors on these three time‐to‐event endpoints. We propose a novel statistical approach that jointly models such data via a pair of copulas to account for multiple dependence structures, while the marginal distribution of each endpoint is formulated by a Cox proportional hazards model. We develop an estimation procedure based on pseudo‐likelihood and carry out simulation studies to examine the performance of the proposed method in finite samples. The practical utility of the proposed method is further illustrated with data from the motivating example.  相似文献   

9.
Semi-competing risks data include the time to a nonterminating event and the time to a terminating event, while competing risks data include the time to more than one terminating event. Our work is motivated by a prostate cancer study, which has one nonterminating event and two terminating events with both semi-competing risks and competing risks present as well as two censoring times. In this paper, we propose a new multi-risks survival (MRS) model for this type of data. In addition, the proposed MRS model can accommodate noninformative right-censoring times for nonterminating and terminating events. Properties of the proposed MRS model are examined in detail. Theoretical and empirical results show that the estimates of the cumulative incidence function for a nonterminating event may be biased if the information on a terminating event is ignored. A Markov chain Monte Carlo sampling algorithm is also developed. Our methodology is further assessed using simulations and also an analysis of the real data from a prostate cancer study. As a result, a prostate-specific antigen velocity greater than 2.0 ng/mL per year and higher biopsy Gleason scores are positively associated with a shorter time to death due to prostate cancer.  相似文献   

10.
Clinical prediction models play a key role in risk stratification, therapy assignment and many other fields of medical decision making. Before they can enter clinical practice, their usefulness has to be demonstrated using systematic validation. Methods to assess their predictive performance have been proposed for continuous, binary, and time-to-event outcomes, but the literature on validation methods for discrete time-to-event models with competing risks is sparse. The present paper tries to fill this gap and proposes new methodology to quantify discrimination, calibration, and prediction error (PE) for discrete time-to-event outcomes in the presence of competing risks. In our case study, the goal was to predict the risk of ventilator-associated pneumonia (VAP) attributed to Pseudomonas aeruginosa in intensive care units (ICUs). Competing events are extubation, death, and VAP due to other bacteria. The aim of this application is to validate complex prediction models developed in previous work on more recently available validation data.  相似文献   

11.
CRISCAT is a computer program for the analysis of grouped survival data with competing risks via weighted least squares methods. Competing risks adjustments are obtained from general matrix operations using many of the strategies employed in a previously developed program (GENCAT) for multivariate categorical data. CRISCAT computes survival rates at several time points for multiple causes of failure, where each rate is adjusted for other causes in the sense that failure due to these other causes has been eliminated as a risk. The program can generate functions of the adjusted survival rates, to which asymptotic regression models may be fit. CRISCAT yields test statistics for hypotheses involving either these functions or estimated model parameters. Thus, this computational algorithm links competing risks theory to linear models methods for contingency table analysis and provides a unified approach to estimation and hypothesis testing of functions involving competing risks adjusted rates.  相似文献   

12.
We are interested in the estimation of average treatment effects based on right-censored data of an observational study. We focus on causal inference of differences between t-year absolute event risks in a situation with competing risks. We derive doubly robust estimation equations and implement estimators for the nuisance parameters based on working regression models for the outcome, censoring, and treatment distribution conditional on auxiliary baseline covariates. We use the functional delta method to show that these estimators are regular asymptotically linear estimators and estimate their variances based on estimates of their influence functions. In empirical studies, we assess the robustness of the estimators and the coverage of confidence intervals. The methods are further illustrated using data from a Danish registry study.  相似文献   

13.
A method for fitting parametric models to apparently complex hazard rates in survival data is suggested. Hazard complexity may indicate competing causes of failure. A competing risks model is constructed on the assumption that a failure time can be considered as the first passage time of possibly several latent, stochastic processes competing in reaching a barrier. An additional assumption of independence between the hidden processes leads directly to a composite hazard function as the sum of the cause specific hazards. We show how this composite hazard model based on Wiener processes can serve as a flexible tool for modelling complex hazards by varying the number of processes and their starting conditions. An example with real data is presented. Parameter estimation and model assessment are based on Markov Chain Monte Carlo methods. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In medical research, investigators are often interested in inferring time‐to‐event distributions under competing risks. It is well known, however, that the naive approach based on the Kaplan–Meier method to estimate the proportion of cause‐specific events overestimates the true quantity. In this paper, we show that the quantile residual life function, a natural and popular summary measure of survival data, could be also seriously affected by the competing events. An existing two‐sample test statistic for inference on median residual life is modified for competing risks data, which does not involve estimation of the improper probability density function of the subdistribution of cause‐specific events under censoring. Simulation results demonstrate that the test statistic controls the type 1 error probabilities reasonably well. The proposed method is applied to a real data example from a large‐scale phase III breast cancer study.  相似文献   

15.
In many clinical studies that involve follow-up, it is common to observe one or more sequences of longitudinal measurements, as well as one or more time to event outcomes. A competing risks situation arises when the probability of occurrence of one event is altered/hindered by another time to event. Recently, there has been much attention paid to the joint analysis of a single longitudinal response and a single time to event outcome, when the missing data mechanism in the longitudinal process is non-ignorable. We, in this paper, propose an extension where multiple longitudinal responses are jointly modeled with competing risks (multiple time to events). Our shared parameter joint model consists of a system of multiphase non-linear mixed effects sub-models for the multiple longitudinal responses, and a system of cause-specific non-proportional hazards frailty sub-models for competing risks, with associations among multiple longitudinal responses and competing risks modeled using latent parameters. The joint model is applied to a data set of patients who are on mechanical circulatory support and are awaiting heart transplant, using readily available software. While on the mechanical circulatory support, patient liver and renal functions may worsen and these in turn may influence one of the two possible competing outcomes: (i) death before transplant; (ii) transplant. In one application, we propose a system of multiphase cause-specific non-proportional hazard sub-model where frailty can be time varying. Performance under different scenarios was assessed using simulation studies. By using the proposed joint modeling of the multiphase sub-models, one can identify: (i) non-linear trends in multiple longitudinal outcomes; (ii) time-varying hazards and cumulative incidence functions of the competing risks; (iii) identify risk factors for the both types of outcomes, where the effect may or may not change with time; and (iv) assess the association between multiple longitudinal and competing risks outcomes, where the association may or may not change with time.  相似文献   

16.
P. Saha  P. J. Heagerty 《Biometrics》2010,66(4):999-1011
Summary Competing risks arise naturally in time‐to‐event studies. In this article, we propose time‐dependent accuracy measures for a marker when we have censored survival times and competing risks. Time‐dependent versions of sensitivity or true positive (TP) fraction naturally correspond to consideration of either cumulative (or prevalent) cases that accrue over a fixed time period, or alternatively to incident cases that are observed among event‐free subjects at any select time. Time‐dependent (dynamic) specificity (1–false positive (FP)) can be based on the marker distribution among event‐free subjects. We extend these definitions to incorporate cause of failure for competing risks outcomes. The proposed estimation for cause‐specific cumulative TP/dynamic FP is based on the nearest neighbor estimation of bivariate distribution function of the marker and the event time. On the other hand, incident TP/dynamic FP can be estimated using a possibly nonproportional hazards Cox model for the cause‐specific hazards and riskset reweighting of the marker distribution. The proposed methods extend the time‐dependent predictive accuracy measures of Heagerty, Lumley, and Pepe (2000, Biometrics 56, 337–344) and Heagerty and Zheng (2005, Biometrics 61, 92–105).  相似文献   

17.
Variable selection is critical in competing risks regression with high-dimensional data. Although penalized variable selection methods and other machine learning-based approaches have been developed, many of these methods often suffer from instability in practice. This paper proposes a novel method named Random Approximate Elastic Net (RAEN). Under the proportional subdistribution hazards model, RAEN provides a stable and generalizable solution to the large-p-small-n variable selection problem for competing risks data. Our general framework allows the proposed algorithm to be applicable to other time-to-event regression models, including competing risks quantile regression and accelerated failure time models. We show that variable selection and parameter estimation improved markedly using the new computationally intensive algorithm through extensive simulations. A user-friendly R package RAEN is developed for public use. We also apply our method to a cancer study to identify influential genes associated with the death or progression from bladder cancer.  相似文献   

18.
Many infectious diseases are well prevented by proper vaccination. However, when a vaccine is not completely efficacious, there is great interest in determining how the vaccine effect differs in subgroups conditional on measured immune responses postvaccination and also according to the type of infecting agent (eg, strain of a virus). The former is often called correlate of protection (CoP) analysis, while the latter has been called sieve analysis. We propose a unified framework for simultaneously assessing CoP and sieve effects of a vaccine in a large Phase III randomized trial. We use flexible parametric models treating times to infection from different agents as competing risks and estimated maximum likelihood to fit the models. The parametric models under competing risks allow for estimation of both cumulative incidence-based contrasts and instantaneous rates. We outline the assumptions with which we can link the observable data to the causal contrasts of interest, propose hypothesis testing procedures, and evaluate our proposed methods in an extensive simulation study.  相似文献   

19.
Malka Gorfine  Li Hsu 《Biometrics》2011,67(2):415-426
Summary In this work, we provide a new class of frailty‐based competing risks models for clustered failure times data. This class is based on expanding the competing risks model of Prentice et al. (1978, Biometrics 34 , 541–554) to incorporate frailty variates, with the use of cause‐specific proportional hazards frailty models for all the causes. Parametric and nonparametric maximum likelihood estimators are proposed. The main advantages of the proposed class of models, in contrast to the existing models, are: (1) the inclusion of covariates; (2) the flexible structure of the dependency among the various types of failure times within a cluster; and (3) the unspecified within‐subject dependency structure. The proposed estimation procedures produce the most efficient parametric and semiparametric estimators and are easy to implement. Simulation studies show that the proposed methods perform very well in practical situations.  相似文献   

20.
Elashoff RM  Li G  Li N 《Biometrics》2008,64(3):762-771
Summary .   In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel ( Prentice et al., 1978 , Biometrics 34, 541–554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号