首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The innate immune response elicited by Helicobacter pylori in the human gastric mucosa involves a range of cellular signalling pathways, including those implicated in metabolism regulation. In this study, we analysed H. pylori-induced PI3K/Akt/mTOR signalling, which regulates glycolysis and protein synthesis and associates thereby with cellular energy- and nutrients-consuming processes such as growth and proliferation. The immunohistochemical analysis demonstrated that Akt kinase phosphorylation is abundant in gastric biopsies obtained from gastritis, gastric adenoma and adenocarcinoma patients. Infection with H. pylori led to the phosphorylation of Akt effectors mTOR and S6 in a type 4 secretion system (T4SS)-independent manner in AGS cells. We observed that the activation of these molecules was dependent on PI3K and the Src family tyrosine kinases. Furthermore, H. pylori induced the phosphorylation of 4E-BP1 and eIF4E and suppressed the phosphorylation of eEF2, which are important regulators of protein synthesis. Inhibition of PI3K and Akt kinase prevented the phosphorylation of 4E-BP1, suggesting that PI3K signalling is involved in the regulation of translation initiation during H. pylori infection. Metabolic labelling showed that infected cells had higher rates of [35S]methionine/cysteine incorporation, and this effect could be prevented using LY294002, an PI3K inhibitor. Thus, H. pylori activates PI3K/Akt signalling, mTOR, eIFs and protein translation, which might impact H. pylori-related gastric pathophysiology.  相似文献   

2.
We previously demonstrated that Mycobacterium tuberculosis (M. tbc)-induced interleukin (IL)-12 expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) 1/2 pathways in human monocyte-derived macrophages (MDMs). To extend these studies, we examined the nature of the involvement of toll-like receptors (TLRs) and intracellular signalling pathways downstream from PI3K in M. tbc-induced IL-23 expression in human MDMs. M. tbc-induced Akt activation and IL-23 expression were essentially dependent on TLR2. Blockade of the mammalian targets of rapamycin (mTOR)/70 kDa ribosomal S6 kinase 1 (S6K1) pathway by the specific inhibitor rapamycin greatly enhanced M. tbc-induced IL-12/IL-23 p40 (p40) and IL-23 p19 (p19) mRNA and IL-23 protein expression. In sharp contrast, p38 mitogen-activated protein kinase (MAPK) inhibition abrogated the p40 and p19 mRNA and IL-23 protein expression induced by M. tbc. Furthermore, the inhibition of PI3K-Akt, but not ERK 1/2 pathway, attenuated M. tbc-induced S6K1 phosphorylation, whereas PI3K inhibition enhanced p38 phosphorylation and apoptosis signal-regulating kinase 1 activity during exposure to M. tbc. Although the negative or positive regulation of IL-23 was not reversed by neutralization of IL-10, it was significantly modulated by blocking TLR2. Collectively, these findings provide new insight into the homeostatic mechanism controlling type 1 immune responses during mycobacterial infection involving the intracellular network of PI3K, S6K1, ERK 1/2 and p38 MAPK pathways in a TLR2-dependent manner.  相似文献   

3.
4.
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.  相似文献   

5.
It has been shown that IGF-1-induced pancreatic beta-cell proliferation is glucose-dependent; however, the mechanisms responsible for this glucose dependence are not known. Adenoviral mediated expression of constitutively active phosphatidylinositol 3-kinase (PI3K) in the pancreatic beta-cells, INS-1, suggested that PI3K was not necessary for glucose-induced beta-cell proliferation but was required for IGF-1-induced mitogenesis. Examination of the signaling components downstream of PI3K, 3-phosphoinositide-dependent kinase 1, protein kinase B (PKB), glycogen synthase kinase-3, and p70-kDa-S6-kinase (p70(S6K)), suggested that a major part of glucose-dependent beta-cell proliferation requires activation of mammalian target of rapamycin/p70(S6K), independent of phosphoinositide-dependent kinase 1/PKB activation. Adenoviral expression of the kinase-dead form of PKB in INS-1 cells decreased IGF-1-induced beta-cell proliferation. However, a surprisingly similar decrease was also observed in adenoviral wild type and constitutively active PKB-infected cells. Upon analysis of extracellular signal-regulated protein kinase 1 and 2 (ERK1/ERK2), an increase in ERK1/ERK2 phosphorylation activation by glucose and IGF-1 was observed in kinase-dead PKB-infected cells, but this phosphorylation activation was inhibited in the constitutively active PKB-infected cells. Hence, there is a requirement for the activation of both ERK1/ERK2 and mammalian target of rapamycin/p70(S6K) signal transduction pathways for a full commitment to glucose-induced pancreatic beta-cell mitogenesis. However, for IGF-1-induced activation, these pathways must be carefully balanced, because chronic activation of one (PI3K/PKB) can lead to dampening of the other (ERK1/2), reducing the mitogenic response.  相似文献   

6.
7.
Ischaemia/reperfusion (I/R) injury is a common clinical condition that results in apoptosis and oxidative stress injury. Thyroid hormone was previously reported to elicit cardiac myocyte hypertrophy and promote cardiac function after cardiac injury. We used an in vivo mouse model of I/R injury and in vitro primary cardiomyocyte culture assays to investigate the effects of thyroid hormone on cardiomyocytes during hypoxia/reoxygenation (H/R) injury. The results showed that T3 pretreatment in vivo significantly improved left ventricular function after I/R injury. In vitro, T3 pretreatment decreased cell apoptosis rate, inhibited caspase-3 activity and decreased the Bax/Bcl-2 ration induced by H/R injury. T3 pretreatment significantly attenuated the loss of mitochondrial membrane potential. Furthermore, it was observed that T3 diminished the expression of NCX1 protein and decreased SERCA2a protein expression in H/R-induced cardiomyocytes, and T3 prevented intracellular Ca2+ increase during H/R injury. Also, T3 increased the expression of IGF-1, and PI3K/Akt signalling in cardiomyocytes under H/R-induced injury, and that the protective effect of T3 against H/R-induced injury was blocked by the PI3K inhibitor LY294002. IGF-1 receptor (IGF-1R) inhibitor GSK1904529A significantly inhibited the expression of IGF-1R and PI3K/Akt signalling. In summary, T3 pretreatment protects cardiomyocytes against H/R-induced injury by activating the IGF-1-mediated PI3K/Akt signalling pathway.  相似文献   

8.
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus and cell type specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction of COX-2 expression. This study aims to elucidate the role of intracellular signaling pathways in Zn2+-induced COX-2 expression in human bronchial epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) potently block Zn2+-induced COX-2 mRNA and protein expression. Overexpression of adenoviral constructs encoding dominant-negative Akt kinase downstream of PI3K or wild-type phosphatase and tensin homolog deleted on chromosome 10, an important PI3K phosphatase, suppresses COX-2 mRNA expression induced by Zn2+. Zn2+ exposure induces phosphorylation of the tyrosine kinases, including Src and EGF receptor (EGFR), and the p38 mitogen-activated protein kinase. Blockage of these kinases results in inhibition of Zn2+-induced Akt phosphorylation as well as COX-2 protein expression. Overexpression of dominant negative p38 constructs suppresses Zn2+-induced increase in COX-2 promoter activity. In contrast, the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinases have minimal effect on Akt phosphorylation and COX-2 expression. Inhibition of p38, Src, and EGFR kinases with pharmacological inhibitors markedly reduces Akt phosphorylation induced by Zn2+. However, the PI3K inhibitors do not show inhibitory effects on p38, Src, and EGFR. These data suggest that p38 and EGFR kinase-mediated Akt activation is required for Zn2+-induced COX-2 expression and that the PI3K/Akt signaling pathway plays a central role in this event.  相似文献   

9.
10.
Chen H  Michel T 《Biochemistry》2006,45(26):8023-8033
Activation of insulin receptors stimulates the phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway in vascular endothelial cells. Heterotrimeric G proteins appear to modulate some of the cellular responses that are initiated by receptor tyrosine kinases, but the roles of specific G protein subunits in signaling are less clearly defined. We found that insulin treatment of cultured bovine aortic endothelial cells (BAEC) activates the alpha isoform of PI3-K (PI3-Kalpha) and discovered that purified G protein Gbeta1gamma2 inhibits PI3-Kalpha enzyme activity. Transfection of BAEC with a duplex siRNA targeting bovine Gbeta1 leads to a 90% knockdown in Gbeta1 protein levels, with no effect on expression of other G protein subunits. siRNA-mediated Gbeta1 knockdown markedly and specifically potentiates insulin-dependent activation of kinase Akt, likely reflecting the removal of the inhibitory effect of Gbetagamma on PI3-Kalpha activity. Insulin-induced tyrosine phosphorylation of insulin receptors is unaffected by Gbeta1 siRNA. By contrast, Gbeta1 knockdown leads to a significant decrease in the level of serine phosphorylation of the insulin receptor substrate IRS-1. We explored the effects of siRNA on several serine/threonine protein kinases that have been implicated in insulin signaling. Gbeta1 siRNA significantly attenuates phosphorylation of the 70 kDa ribosomal protein S6 kinase (p70S6K) in the basal state and following insulin treatment. We also found that IGF-1-initiated activation of Akt is significantly enhanced after siRNA-mediated Gbeta1 knockdown, while IGF-1-induced p70S6K activation is markedly suppressed following transfection of Gbeta1 siRNA. We propose that Gbeta1 participates in the activation of p70S6K, which in turn promotes the serine phosphorylation and inhibition of IRS-1. Taken together, these studies suggest that Gbeta1 plays an important role in insulin and IGF-1 signaling in endothelial cells, both by inhibiting the activity of PI3-Kalpha and by stimulating pathways that lead to activation of protein kinase p70S6K and to the serine phosphorylation of IRS-1.  相似文献   

11.
The role of epidermal growth factor receptor (EGFR) tyrosine kinase and its downstream targets in the regulation of the transition from the G0/G1 phase into DNA synthesis in response to ANG II has not been previously investigated in intestinal epithelial IEC-18 cells. ANG II induced a rapid and striking EGFR tyrosine phosphorylation, which was prevented by selective inhibitors of EGFR tyrosine kinase activity (e.g., AG-1478) or by broad-spectrum matrix metalloproteinase (MMP) inhibitor GM-6001. Pretreatment of these cells with either AG-1478 or GM-6001 reduced ANG II-stimulated DNA synthesis by approximately 50%. To elucidate the downstream targets of EGFR, we demonstrated that ANG II stimulated phosphorylation of Akt at Ser473, mTOR at Ser2448, p70S6K1 at Thr389, and S6 ribosomal protein at Ser(235/236). Pretreatment with AG-1478 inhibited Akt, p70S6K1, and S6 ribosomal protein phosphorylation. Inhibition of phosphatidylinositol (PI)3-kinase with LY-294002 or mTOR/p70S6K1 with rapamycin reduced [3H]thymidine incorporation by 50%, i.e., to levels comparable to those achieved by addition of either AG-1478 or GM-6001. Utilizing Akt small-interfering RNA targeted to Akt1 and Akt2, Akt protein knockdown dramatically inhibited p70S6K1 and S6 ribosomal protein phosphorylation. In contrast, AG-1478 or Akt gene silencing exerted no detectable inhibitory effect on ANG II-induced extracellular signal-regulated kinase 1/2 phosphorylation in IEC-18 cells. Taken together, our results demonstrate that EGFR transactivation mediates ANG II-stimulated mitogenesis through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway in IEC-18 cells.  相似文献   

12.
Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt. The effect of IGF-1 was blocked by the phosphatidylinositide 3-kinase (PI3K) inhibitors LY294002 (50 micrometer) and wortmannin (0.5 micrometer), but not by the MEK inhibitor PD98059 (50 micrometer) or the p70 S6 kinase pathway inhibitor rapamycin (50 nm), suggesting that the stimulation of Akt by IGF-1 is mediated by the PI3K pathway. Interestingly, cotreatment with PMA (400 nm) attenuated IGF-1-induced activation of Akt. The attenuation was blocked completely by the PKC inhibitor GO6983 (0.5 micrometer), but only partially by the MEK inhibitor PD98059 (50 micrometer), indicating that MAPK-dependent and -independent pathways are involved. PMA induced the activation of PKC in PC12 cells, and this induction was blocked by GO6983. These data further support the role of PKC in the effect of PMA. Moreover, PKCdelta is likely involved in the action of PMA on the basis of data obtained using isoform-specific inhibitors such as rottlerin. PMA also decreased IGF-1-induced tyrosine phosphorylation of insulin receptor substrate-1 and its association with PI3K. Taken together, these results suggest, for the first time, that stimulation of PKC modulates IGF-1-induced activation of Akt.  相似文献   

13.
Notch signalling plays an important role in hematopoiesis and in the pathogenesis of T-ALL. Notch is known to interact with Ras and PTEN/PI3K (phosphoinositide-3 kinase)/Akt pathways. We investigated the interaction of Notch with these pathways and the possible reciprocal regulation of these signalling systems in T-ALL cells in vitro. Our analyses indicate that the PI3K/Akt pathway is constitutively active in the four T-ALL cell lines tested. Akt phosphorylation was not altered by the sequestration of growth factors, that is, Akt activation seems to be less dependent on but not completely independent of growth factors, possibly being not subject to negative feedback regulation. PTEN expression was not detected in 3/4 cell lines tested, suggesting the loss of PTEN-mediated Akt activation. Inhibition of the PI3K/Akt pathway arrests growth and enhances apoptosis, but with no modulation of expression of Bax-alpha and Bcl-2 proteins. We analysed the relationship between Notch-1 and the PI3K/Akt signalling and show that inhibition of the Akt pathway changes Notch expression; Notch-1 protein decreased in all the cell lines upon treatment with the inhibitor. Our studies strongly suggest that Notch signalling interacts with PI3K/Akt signalling and further that this occurs in the absence of PTEN expression. The consequences of this to the signalling outcome are yet unclear, but we have uncovered a significant inverse relationship between Notch and PI3K/Akt pathway, which leads us to postulate the operation of a reciprocal regulatory loop between Notch and Ras-PI3K/Akt in the pathogenesis of T-ALL.  相似文献   

14.
15.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

16.
This study examined how L-leucine affected DNA synthesis and cell cycle regulatory protein expression in cultured primary chicken hepatocytes. L-Leucine promoted DNA synthesis in a dose- and time-dependent manner, with concomitant increases in cyclin D1 and cyclin E expression. Phospholipase C (PLC) and protein kinase C (PKC) mediated the L-leucine-induced increases in [3H]-thymidine incorporation and cyclin D1/CDK4 and cyclin E/CDK2 expression, as U73122 (a PLC inhibitor) or bisindolylmaleimide I (a PKC blocker) inhibited these effects. L-Leucine also increased PKC phosphorylation and intracellular Ca2+ levels. L-Leucine-mediated increases in [3H]-thymidine incorporation and cyclin/CDK expression were sensitive to LY 294002 (PI3K inhibitor), Akt inhibitor, PD 98059 (MEK inhibitor). It was also observed that L-leucine-induced increases of cyclin/CDK expression were inhibited by PI3K siRNA and ERK siRNA; L-leucine increased extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt phosphorylation levels. Bisindolylmaleimide I attenuated L-leucine-induced phosphorylation of ERK1/2 but did not influence Akt phosphorylation, and PI3K siRNA and LY 294002 inhibited L-leucine-induced ERK1/2 phosphorylation, suggesting some cross-talk between the PKC and ERK1/2 or PI3K/Akt and ERK1/2 pathways. L-Leucine also increased the levels of phosphorylated molecular target of rapamycin (mTOR) and two of its targets, ribosomal protein S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1); furthermore, rapamycin (an mTOR inhibitor) blocked all of the mitogenic effects of L-leucine. In addition, Akt inhibitor blocked L-leucine-induced mTOR phosphorylation. In conclusion, L-leucine stimulated DNA synthesis and promoted cell cycle progression in primary cultured chicken hepatocytes through PKC, ERK1/2, PI3K/Akt, and mTOR.  相似文献   

17.
Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.  相似文献   

18.
The signalling pathways leading to the development of Helicobacter pylori -induced gastric cancer remain poorly understood. We tested the hypothesis that H. pylori infections involve the activation of Akt signalling in human gastric epithelial cancer cells. Immunoblot, immunofluorescence and kinase assays show that H. pylori infection of gastric epithelial cells induced phosphorylation of Akt at Ser 473 and Thr 308. Mutations in the H. pylori virulence factor OipA dramatically reduced phosphorylation of Ser 473, while the cag pathogenicity island mutants predominantly inhibited phosphorylation of Thr 308. As the downstream of Akt activation, H. pylori infection inactivated the inactivation of glycogen synthase kinase 3β at Ser 9 by its phosphorylation. As the upstream of Akt activation, H. pylori infection activated epidermal growth factor receptor (EGFR) at Tyr 992, phosphatidylinositol 3-OH kinase (PI3K) p85 subunit and PI3K-dependent kinase 1 at Ser 241. Pharmacologic inhibitors of PI3K or mitogen-activated protein kinase kinase (MEK), Akt knock-down and EGFR knock-down showed that H. pylori infection induced the activation of EGFR→PI3K→PI3K-dependent kinase 1→Akt→extracellular signal-regulated kinase signalling pathways, the inactivation of glycogen synthase kinase 3β and interleukin-8 production. The combined functions of cag pathogenicity island and OipA were necessary and sufficient for full activation of signalling at each level. We propose activation of these pathways as a novel mechanism for H. pylori -mediated carcinogenesis.  相似文献   

19.
In multiple myeloma, the Akt/PI3K pathway is involved in the proliferation of myeloma cells. In the current study, we have investigated the impact of the CD45 phosphatase in the control of Akt/PI3K activation. We show that Akt activation in response to insulin-like growth factor-1 (IGF-1) is highly variable from one human myeloma cell line to another one. Actually, Akt activation is highly related to whether CD45 is expressed or not. Indeed, both the magnitude and the duration of Akt phosphorylation in response to IGF-1 are more important in CD45- than in CD45+ myeloma cell lines. We next demonstrate a physical association between CD45 and IGF-1 receptor (IGF-1R) suggesting that CD45 could be involved in the dephosphorylation of the IGF-1R. Furthermore, the growth of CD45- myeloma cell lines is mainly or even totally controlled by the PI3K pathway whereas that of CD45+ myeloma cell lines is modestly controlled by it. Indeed, wortmannin, a specific PI3K inhibitor, induced a dramatic growth inhibition in the CD45- myeloma cell lines characterized by a G1 growth arrest, whereas it has almost no effect on CD45+ myeloma cell lines. Altogether, these results suggest that CD45 negatively regulates IGF-1-dependent activation of PI3K. Thus, strategies that block IGF-1R signaling and consequently the Akt/PI3K pathway could be a priority in the treatment of patients with multiple myeloma, especially those lacking CD45 expression that have a very poor clinical outcome.  相似文献   

20.
Inactivation of PI 3-kinase (PI3K) signalling is critical for tumour suppression by PTEN. This is thought to be a unidirectional relationship in which PTEN degrades the lipids produced by PI3K, thus controlling cell proliferation, survival and migration. We now show that this relationship is in fact bidirectional, whereby PI3K reciprocally controls PTEN. We report that the p110delta PI3K negatively regulates PTEN, through a pathway involving inhibition of RhoA. Inactivation of p110delta in macrophages led to reduced Akt and Rac1 activation, but paradoxically to increased RhoA and PTEN activity. Partial inactivation of p190RhoGAP and a reduced binding of cytoplasmic RhoA to the cyclin-dependent kinase inhibitor p27 both contributed to the increased RhoA-GTP levels upon p110delta inactivation. Pharmacological inhibition of ROCK, a downstream effector kinase of RhoA, restored all signalling and functional defects of p110delta inactivation, including Akt phosphorylation, chemotaxis and proliferation. This work identifies the RhoA/ROCK pathway as a major target of p110delta-mediated PI3K signalling, and establishes for the first time that PI3K controls itself, via a feedback loop involving PTEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号