首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene regulates the timing of leaf senescence in Arabidopsis   总被引:20,自引:7,他引:13  
The plant hormone ethylene influences many aspects of plant growth and development, including some specialized forms of programmed senescence such as fruit ripening and flower petal senescence. To study the relationship between ethylene and leaf senescence, etr1-1, an ethylene-insensitive mutant in Arabidopsis, was used. Comparative analysis of rosette leaf senescence between etr1-1 and wild-type plants revealed that etr1-1 leaves live approximately 30% longer than the wild-type leaves. Delayed leaf senescence in etr1-1 coincided with delayed induction of senescence-associated genes (SAGs) and higher expression levels of photosynthesis-associated genes (PAGs). In wild-type plants, exogenous ethylene was able to further accelerate induction of SAGs and decrease expression of PAGs. The extended period of leaf longevity in etr1-1 was associated with low levels of photosynthetic activity. Therefore, the leaves in etr1-1 functionally senesced even though the apparent life span of the leaf was prolonged.  相似文献   

2.
Variation in leaf development caused by water deficit was analysed in 120 recombinant inbred lines derived from two Arabidopsis thaliana accessions, Ler and An‐1. Main effect quantitative trait loci (QTLs) and QTLs in epistatic interactions were mapped for the responses of rosette area, leaf number and leaf 6 area to water deficit. An epistatic interaction between two QTLs affected the response of whole rosette area and individual leaf area but only with effects in well‐watered condition. A second epistatic interaction between two QTLs controlled the response of rosette area and leaf number with specific effects in the water deficit condition. These effects were validated by generating and phenotyping new appropriate lines. Accordingly, a low reduction of rosette area was observed for lines with a specific allelic combination at the two interacting QTLs. This low reduction was accompanied by an increase in leaf number with a lengthening of the vegetative phase and a low reduction in individual leaf area with low reductions in epidermal cell area and number. Statistical analyses suggested that responses of epidermal cell area and number to water deficit in individual leaves were partly caused by delay in flowering time and reduction in leaf emergence rate, respectively.  相似文献   

3.
4.
5.
6.
7.
A role for diacylglycerol acyltransferase during leaf senescence   总被引:18,自引:0,他引:18  
  相似文献   

8.
该实验对CDF1类似蛋白基因(P1)在拟南芥叶片发育不同阶段的定量PCR结果显示,P1基因在拟南芥叶片发育的所有时期均可表达,但在茎生叶和衰老叶中的表达水平明显高于成熟叶和幼叶。GUS报告基因表达的组织化学染色结果显示,P1启动子在拟南芥叶片中有较高的驱动活性;在营养生长阶段的幼苗和植株(4~5周)的所有叶片中均能检测到GUS表达,但在植株转入生殖生长阶段后(6周及以后),GUS表达主要集中在逐渐衰老的叶中,并随着叶片衰老程度加剧GUS染色程度也越深,这一结果与GUS荧光定量检测结果一致。通过分析P1基因启动子上可能存在的顺式调控元件,发现茉莉酸甲酯、热压、干旱和水杨酸等均能够引起叶片衰老调控元件的响应,证实P1的表达受到这些因素的调控。研究表明,P1在拟南芥莲座叶片中很可能参与了对上游衰老信号的响应,该研究结果为进一步探究P1在叶片衰老过程中的分子功能验证奠定了基础。  相似文献   

9.
10.
Physiological and morphological differences between Plantago major L. (Plantaginaceae) growing in full sunlight and shaded conditions were examined. Photosynthesis of isolated leaves was saturated by irradiance around 300 μE m−-2 sec−-1 and 170 μE m−-2 sec−-1, respectively. In contrast to previous studies of sun/shade leaf responses, initial slopes of curves from shaded plants are significantly less than those taken from full-sun plants. Within the 400–500 nm and 600–700 nm ranges, leaves 5.0 cm or longer are essentially opaque, transmitting less than 1.25% of incident light. Chlorophyll content per unit leaf area is nearly equivalent for leaves from plants growing under the two extremes in light levels. Morphometric comparisons indicate shaded plants bear fewer leaves, have less leaf overlap, lower total leaf area, and longer petioles than full-sun plants. Leaf elongation rates are lower and the duration between the emergence of successive leaves is longer in shaded plants. Computer analyses of both types of rosette morphology reveal shaded plants have an equal or greater capacity to intercept light than full-sun plants, principally because of the minimization of leaf overlap and the large variation in the deflection angles of leaves in shaded rosette morphologies. Simulations, calculated on the basis of light interception, and taking into account the transition between photosynthate-importing and -exporting leaves, predict relative growth rates for full-sun and shaded rosette morphologies that are in reasonable agreement with empirically determined leaf growth rates. However, the data indicate that significant physiological and morphological differences exist among leaves from a single rosette, and among developmentally comparable leaves from rosettes growing under different ambient light environments. Differences among leaves on a single plant must be accommodated in computerized techniques attempting to simulate light interception and its consequences on potential growth rates.  相似文献   

11.
Transgenic Arabidopsis thaliana plants containingthe Agrobacterium tumefaciens cytokinin-biosynthesis geneipt were produced to study the effect of increasedcytokinin (CK) levels on the development of this rosette plant species. Inthreeindependently transformed lines (ipt-156, 158 and 161),Arabidopsis plants had smaller leaves, an underdevelopedroot system and decreased apical dominance in inflorescence stems. The smallertransgenic leaves were highly serrated along the margins, pale green and hadpointed leaf tips. In cross section, transgenic leaves had smaller cells andirregularly shaped epidermal cells. In the ipt-161 line,leaves and hypocotyls frequently exhibited purple color due to anthocyaninproduction. The most severe phenotype was observed in tissue cultureconditions,while growth in soil reduced or eliminated some phenotypic effects. Compared toC24 wild type plants, ipt-161 plants accumulated zeatinandzeatin riboside with an approximate 10-fold increase in the total pool of CKs.Astudy of the progeny resulting from crosses between theipt-161 transgenic line and the ethylene insensitivemutants ein1, ein2 andeti5 suggested that part of the altered developmentexhibited by the ipt transgenic plants was caused byincreased ethylene levels.  相似文献   

12.
Müller KJ  He X  Fischer R  Prüfer D 《Planta》2006,224(5):1023-1027
Seed plants with compound leaves constitute a polyphyletic group, but studies of diverse taxa show that genes of the class 1 KNOTTED-LIKE HOMEOBOX (KNOX1) family are often involved in compound leaf development. This suggests that knox1 genes have been recruited on multiple occasions during angiosperm evolution (Bharathan et al. in Science 296:1858–1860, 2002). In agreement with this, we demonstrate that the simple leaf of dandelion (Taraxacum officinale Web.) can be converted into a compound leaf by the constitutive expression of heterologous knox1 genes. Dandelion is a rosette plant of the family Asteraceae, characterised by simple leaves with deeply lobed margins and endogenous knox1 gene expression. Transgenic dandelion plants constitutively expressing the barley (Hordeum vulgare L.) hooded gene (bkn3, barley knox3) or the related bkn1 gene, developed compound leaves featuring epiphyllous rosettes. We discuss these results in the context of two current models of compound leaf formation.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
14.
15.
Activation tagging of the gene LEAFY PETIOLE ( LEP) with a T-DNA construct induces ectopic leaf blade formation in Arabidopsis, which results in a leafy petiole phenotype. In addition, the number of rosette leaves produced prior to the onset of bolting is reduced, and the rate of leaf initiation is retarded by the activation tagged LEP gene. The ectopic leaf blade results from an invasion of the petiole region by the wild-type leaf blade. In order to isolate mutants that are specifically disturbed in the outgrowth of the leaf blade, second site mutagenesis was performed using ethane methanesulphonate (EMS) on a transgenic line that harbours the activation-tagged LEP gene and exhibits the leafy petiole phenotype. A collection of revertant for leafy petiole ( rlp) lines was isolated that form petiolated rosette leaves in the presence of the activated LEP gene, and could be classified into three groups. The class III rlp lines also display altered leaf development in a wild-type (non-transgenic) background, and are probably mutated in genes that affect shoot or leaf development. The rlp lines of classes I and II, which represent the majority of revertants, do not affect leaf blade outgrowth in a wild-type (non-transgenic) background. This indicates that LEP regulates a subset of the genes involved in the process of leaf blade outgrowth, and that genetic and/or functional redundancy in this process compensates for the loss of RLP function during the formation of the wild-type leaf blade. More detailed genetic and morphological analyses were performed on a selection of the rlp lines. Of these, the dominant rlp lines display complete reversion of (1) the leafy petiole phenotype, (2) the reduction in the number of rosette leaves and (3) the slower leaf initiation rate caused by the activation-tagged LEP gene. Therefore, these lines are potentially mutated in genes for interacting partners of LEP or in downstream regulatory genes. In contrast, the recessive rlp lines exhibit a specific reversion of the leafy petiole phenotype. Thus, these lines are most probably mutated in genes specific for the outgrowth of the leaf blade. Further functional analysis of the rlp mutations will contribute to the dissection of the complex pathways underlying leaf blade outgrowth.Communicated by G. Jürgens  相似文献   

16.
Kwak MS  Oh MJ  Lee SW  Shin JS  Paek KH  Bae JM 《Plant cell reports》2007,26(8):1253-1262
To develop a strong constitutive gene expression system, the activities of ibAGP1 promoter and its transit peptide were investigated using transgenic Arabidopsis and a GUS reporter gene. The ibAGP1 promoter directed GUS expression in almost entire tissues including rosette leaf, inflorescence stem, inflorescence, cauline leaf and root, suggesting that the ibAGP1 promoter is a constitutive promoter. GUS expression mediated by ibAGP1 promoter was weaker than that by CaMV35S promoter in all tissue types, but when GUS protein was targeted to plastids with the aid of the ibAGP1 transit peptide, GUS levels increased to higher levels in lamina, petiole and cauline leaf compared to those produced by CaMV35S promoter. The enhancing effect of ibAGP1 transit peptide on the accumulation of foreign protein was tissue-specific; accumulation was high in lamina and inflorescence, but low in root and primary inflorescence stem. The transit peptide effect in the leaves was maintained highly regardless of developmental stages of plants. The ibAGP1 promoter and its transit peptide also directed strong GUS gene expression in transiently expressed tobacco leaves. These results suggest that the ibAGP1 promoter and its transit peptide are a strong constitutive foreign gene expression system for transgenesis of dicot plants.  相似文献   

17.
1-Methylcyclopropene (1-MCP) applied alone did not influence significantly the chlorophyll and carotenoid content of the older leaves of Arabidopsis thaliana (L.) Heynh., but retarded the senescence of the younger ones (6th and 7th leaf nodes). However, 1-MCP effectively blocks the ethylene induced senescence of excised rosette leaves. The preliminary application of 1-MCP (3 h in advance to the treatment by Ethrel) almost totally eliminated the ethylene action. Similar trend was also observed after simultaneous application of Ethrel and 1-MCP, and the effects of both treatments on the chlorophyll and carotenoid destruction are comparable.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号