首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

2.
We studied the distribution of basic fibroblast growth factor (bFGF) immunoreactivity in bovine adrenal gland, ovary, and pituitary, using a polyclonal anti-bFGF antibody. In the adrenal gland, the inner layers of the capsule, the zona glomerulosa of the cortex, and the chromaffin cells of the adrenal medulla were intensely stained. In the ovary, follicular epithelial cells of growing follicles and granulosa cells of mature follicles showed strong bFGF-like immunoreactivity. Endocrine cells of the pituitary anterior and intermediate lobes displayed a positive immunoreaction. Blood vessels, including endothelial and smooth muscle cells, as well as stromal cells in all three organs studied, were not stained. This distribution pattern of bFGF immunoreactivity is only partially compatible with the established mitogenic role of this protein, and suggests a wider spectrum of bFGF functions.  相似文献   

3.
Basic fibroblast growth factor (bFGF) has recently been isolated from bovine adrenal glands. Immunohistological data revealed its presence in both adrenal cortex and adrenal medulla. Using immuno-electronmicroscopy, we found that in medullary chromaffin cells bFGF-immunoreactivity is localized in the secretory granules. Immunoreactivity also was observed by electronmicroscopy in isolated granules. Western blot analysis revealed the presence of the typical 18-kDa bFGF and additional immunoreactive materials with molecular masses of approximately 24, 30, and 46 kDa in whole bovine adrenal, and in cortex and medulla. Similar results were obtained with proteins from bovine chromaffin granules, with the following two exceptions: the 46-kDa immunoreactivity was found to be highly enriched when compared with medulla or cortex, and the 18-kDa band could be detected with only an antiserum against a synthetic peptide comprising the 24 NH2-terminal amino acids of bFGF, and not with an antiserum against purified bovine pituitary bFGF. All fractions enriched for bFGF-immunoreactivity showed neurotrophic activity for chick ciliary ganglion neurons, which could be blocked by antibodies. These results demonstrate for the first time the localization and occurrence of bFGF in a cellular secretory organelle, and present further evidence for the existence of higher molecular weight immunoreactive forms of bFGF.  相似文献   

4.
Summary Protein kinase c--like immunoreactivity was studied in the adrenal gland of adult rats and at different pre- and postnatal stages of development (E17-P21) with an antibody specific to both the 21 and - subtypes of the kinase. In the adult rat adrenal gland, the immunoreactivity was seen in numerous nerve fibres in the adrenal medulla both in bundles and individually forming occasionally dense networks around chromaffin cell groups. Several protein kinase c--immunoreactive fibres were also observed transversing the adrenal cortex towards the medulla. No remaining immunoreactive fibres two weeks after transection of the splanchnic nerve could be seen; nor was any immunoreactivity observed in the chromaffin cells of the adrenal medulla or in the cortical cells, but some faintly immunoreactive ganglion cells were detected in the adrenal medulla. The amount and distribution of protein kinase c--like immunoreactivity in the fetal and developing adrenals was very similar to that seen in the adrenal glands of adult rats. On the basis of its localization, the -subtype of protein kinase c does not appear to be directly involved in the release of catecholamines from the adrenal medulla, but it might have a role in the regulation of neurotransmitter release from preganglionic cholinergic neurons.  相似文献   

5.
Summary The present immunohistochemical study reveals that a small number of chromaffin cells in the rat adrenal medulla exhibit CGRP-like immunoreactivity. All CGRP-immunoreactive cells were found to be chromaffin cells without noradrenaline fluorescence; from combined immunohistochemistry and fluorescence histochemistry we suggest that these are adrenaline cells. In addition, all CGRP-immunoreactive cells simultaneously exhibited NPY-like immunoreactivity. CGRP-chromaffin cells were characterized by abundant chromaffin granules with round cores in which the immunoreactive material was densely localized. These findings suggest the co-existence of CGRP, NPY and adrenaline within the chromaffin granules in a substantial number of chromaffin cells.Thicker and thinner nerve bundles, which included CGRP-immunoreactive nerve fibers, with or without varicosities, penetrated the adrenal capsule. Most of them passed through the cortex and entered the medulla directly, whereas others were distributed in subcapsular regions and among the cortical cells of the zona glomerulosa. Here the CGRP-fibers were in close contact with cortical cells. A few of the fibers supplying the cortex extended further into the medulla. The CGRP-immunoreactive fibers in the medulla were traced among and within small clusters of chromaffin cells and around ganglion cells. The CGRP-fibers were directly apposed to both CGRP-positive and negative chromaffin cells, as well as to ganglion cells. Immunoreactive fibers, which could not be found close to blood vessels, were characterized by the presence of numerous small clear vesicles mixed with a few large granular vesicles. The immunoreactive material was localized in the large granular vesicles and also in the axoplasm. Since no ganglion cells with CGRP-like immunoreactivity were found in the adrenal gland, the CGRP-fibers are regarded as extrinsic in origin. In double-immunofluorescence staining for CGRP and SP, all the SP-immunoreactive fibers corresponded to CGRP-immunoreactive ones in the adrenal gland. This suggests that CGRP-positive fibers in the adrenal gland may be derived from the spinal ganglia, as has been demonstrated with regard to the SP-nerve fibers.  相似文献   

6.
Summary The presence of neurokinin A immunoreactivity was studied in the chromaffin cells of the porcine adrenal medulla and in the nerve fibres innervating the adrenal gland during ontogenic development. For comparison, chromogranin A immunoreactivity was used as a marker for chromaffin cells.Whereas chromogranin A was found in chromaffin cells through all steps in embryonic development, three developmental stages of neurokinin A immunoreactivity could be distinguished. In the first and second trimester of gestation, neurokinin A was observed in some groups of chromaffin cells, but no neurokinin-immunoreactive nerve fibres could be detected. In the last trimester of gestation, neurokinin A-reactive chromaffin cells and nerve fibres were both found in adrenal glands. However, in adrenal glands of neonatal piglets, neurokinin A was found only in nerve fibres and not in chromaffin cells. From these results a hypothesis is proposed that neurokinin A might act as a neurotrophic factor in the early stages of the developing porcine chromaffin cells. Biochemical studies are being performed in order to confirm these morphological results and to study the possible role of neurokinin A as a neurotrophic factor in the adrenal gland.On leave from Xian Medical University of China.  相似文献   

7.
Neurocalcin is a novel calcium-binding protein found in bovine brain tissue. We investigated immunoreactivity for neurocalcin in the mouse adrenal medulla using light and electron microscopy. The immunoreactivity was present in nerve fibers, nerve terminals, and ganglion cells in the adrenal medulla, but chromaffin cells, sustentacular cells, and Schwann cells were negative in reaction. Nerve bundles containing neurocalcin-immunoreactive fibers passed through the adrenal cortex and extended into the medulla. Immunopositive nerve fibers branched off and projected varicose terminals around the chromaffin cells. These varicose terminals contained small and large-cored vesicles and made synapses with the chromaffin cells. We performed paraformaldehyde-induced fluorescence-histochemical studies for catecholamine combined with immunohistochemical studies for neurocalcin. Neurocalcin-immunoreactive nerve terminals were more abundant at noradrenaline (fluorescent) cell-rich regions than at adrenaline (non-fluorescent) cell-rich regions. These results show that neurocalcin-immunoreactive nerves mainly innervate noradrenaline-containing chromaffin cells in the mouse adrenal medulla and that neurocalcin may regulate synaptic function in the nerve terminals. Received: 21 October 1996 / Accepted: 12 February 1997  相似文献   

8.
The differentiation of glial cells in developing, neonatal, adult and neoplastic human adrenal medulla has been studied immunohistochemically. From 8 to 28 weeks' gestational age, S-100 protein and its β-subunit revealed two different glial cell populations in adrenal glands, namely Schwann-like and sustentacular cells. Schwann-like cells were spindle-shaped cells forming a continuous layer around groups of sympathetic neuroblasts, often in contact with Schwann cells of nerve fibres entering neuroblastic groups. Sustentacular cells were round or oval cells with dendritic cytoplasmic processes; they were not associated with nerve fibres and mingled both with sympathetic neuroblasts and differentiating chromaffin cells. The developmental fate of Schwann-like cells was different from that of sustentacular cells. Schwann-like cells disappeared from the 28th week of gestational age, in association with the disappearance of sympathetic neuroblastic groups, and they were rarely found in neonatal and adult adrenal medulla. In contrast, sustentacular cells persisted between medullary chromaffin cells, and their number and dendritic cytoplasmic processes progressively increased from foetus to adult. In eight cases of primitive adrenal neuroblastic tumours of neonatal age (five undifferentiated neuroblastomas and three ganglioneuroblastomas), Schwann-like cells were found at the periphery of tumoral nests with a lobular growth pattern, while rare sustentacular cells were associated with neuroblasts. In two cases of adult phaeochromocytomas, only sustentacular cells were detected between chromaffin tumoral cells. Our findings suggest that the glial cell types and their distribution in primitive adrenal medulla tumours closely resemble those observed during development in the groups of adrenal sympathetic neuroblasts and in the clusters of chromaffin cells  相似文献   

9.
The localization of tyrosine hydroxylase (TH) immunoreactivity in rat adrenal chromaffin and pheochromocytoma (PC12) cells was investigated by immunoelectron microscopy using monoclonal and polyclonal antisera against TH purified from rat adrenal medulla. Strong TH immunoreactivity was found uniformly in the granules of the adrenaline cells; the immunoreactivity was visible mainly within the periphery, but not in the clear space of the granules of the noradrenaline cells. In the PC12 cells, strong TH immunoreactivity was also observed uniformly in the granules. In addition, TH immunoreactivity was seen in the cytoplasm, the ribosomes attached to the endoplasmic reticulum and the free ribosomes of both the rat adrenal chromaffin and PC12 cells. These results suggest that TH may be localized in the granules, cytoplasm and ribosomes of rat adrenal chromaffin and PC12 cells.  相似文献   

10.
The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dot-like terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

11.
Summary The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dotlike terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

12.
Numerous data show that malnutrition during early life programs chronic diseases in adulthood. Many of these disorders may result from alterations in the development of neuroendocrine systems, such as the hypothalamo-pituitary-adrenal axis and the sympathoadrenal system. We have previously reported that maternal 50% food restriction during late pregnancy and lactation reduces adrenal weight and impairs chromaffin cell differentiation in male rats at weaning. In addition, maternal undernutrition modifies the expression of several genes involved in proliferation and apoptosis. This study therefore investigated the impact of maternal food restriction on adrenal cell growth in the late postnatal rat. Histological analysis showed that the number of proliferating chromaffin cells assessed by nuclear labelling with BrdU was reduced by 45%, whereas the level of apoptosis visualised by caspase-3 immunoreactivity was increased by 340% in adrenal medulla of offspring from undernourished mothers. In contrast, maternal food restriction did not affect proliferation and apoptosis in cortical cells of rats. These developmental changes were associated with overexpression of TGFbeta2. These data show that perinatal undernutrition impairs the balance between chromaffin cell proliferation and apoptosis. These modifications may lead to "malprogramming" of adrenal medulla development, which could contribute to the pathogenesis of chronic diseases in adulthood.  相似文献   

13.
The differentiation of glial cells in developing, neonatal, adult and neoplastic human adrenal medulla has been studied immunohistochemically. From 8 to 28 weeks' gestational age, S-100 protein and its β-subunit revealed two different glial cell populations in adrenal glands, namely Schwann-like and sustentacular cells. Schwann-like cells were spindle-shaped cells forming a continuous layer around groups of sympathetic neuroblasts, often in contact with Schwann cells of nerve fibres entering neuroblastic groups. Sustentacular cells were round or oval cells with dendritic cytoplasmic processes; they were not associated with nerve fibres and mingled both with sympathetic neuroblasts and differentiating chromaffin cells. The developmental fate of Schwann-like cells was different from that of sustentacular cells. Schwann-like cells disappeared from the 28th week of gestational age, in association with the disappearance of sympathetic neuroblastic groups, and they were rarely found in neonatal and adult adrenal medulla. In contrast, sustentacular cells persisted between medullary chromaffin cells, and their number and dendritic cytoplasmic processes progressively increased from foetus to adult. In eight cases of primitive adrenal neuroblastic tumours of neonatal age (five undifferentiated neuroblastomas and three ganglioneuroblastomas), Schwann-like cells were found at the periphery of tumoral nests with a lobular growth pattern, while rare sustentacular cells were associated with neuroblasts. In two cases of adult phaeochromocytomas, only sustentacular cells were detected between chromaffin tumoral cells. Our findings suggest that the glial cell types and their distribution in primitive adrenal medulla tumours closely resemble those observed during development in the groups of adrenal sympathetic neuroblasts and in the clusters of chromaffin cells  相似文献   

14.
Summary The adrenal medulla appears to exert a regulatory influence on adrenocortical steroidogenesis. We have therefore studied the morphology of rat, porcine and bovine adrenals in order to characterize the contact zones of adrenomedullary and adrenocortical tissues. The distribution of chromaffin cells located within the adrenal cortex and of cortical cells located within the adrenal medulla was investigated. Chromaffin cells were characterized by immunostaining for synaptophysin and chromogranin A, both being considered specific for neuroendocrine cells. Cortical cells were characterized by immunostaining for 17-hydroxylase, an enzyme of the steroid pathway. Cellular contacts of chromaffin cells and cortical cells were examined at the electron microscopical level. In rat and porcine adrenals, rays of chromaffin cells, small cell clusters and single chromaffin cells or small invaginations from the medulla could be detected in all three zones of the cortex. Chromaffin cells often spread in the subcapsular space of the zona glomerulosa. In porcine and bovine adrenals, 17-hydroxylase immunoreactive cells were localized within the medulla. Single cortical cells and small accumulations of cells were spread throughout this region. At the ultrastructural level, the chromaffin cells located within the cortex in pig and rat adrenals formed close cellular contacts with cortical cells in all three zones. Our morphological data provide evidence for a possible paracrine role of chromaffin cells; this may be important for the neuroregulation of the adrenal cortex.  相似文献   

15.
Summary Somatostatin-like immunoreactivity was detected within the adrenal gland of the rat using specific monoclonal antibodies. Immunohistochemical studies demonstrated a few somatostatin-immunoreactive nerve fibers within the adrenal medulla. In addition, a large population of chromaffin cells in the cat adrenal medulla displayed intense somatostatin-like immunoreactivity. Similar cells were not observed in rat or guinea pig adrenal glands, although they were found in human material. The somatostatin-positive cells in the cat adrenal medulla often possessed short immunoreactive processes similar to those seen in somatostatin-immunoreactive paracrine cells of the gut. Characterization of the somatostatin-like immunoreactivity of the cat adrenal by high performance liquid chromatography and radioimmunoassay indicated that somatostatin-28 may account for over 90% of the observed immunoreactivity. It is suggested that somatostatin-28 may have a paracrine or endocrine role in the feline adrenal medulla.  相似文献   

16.
Summary The development of the rat adrenal medulla was studied at the ultrastructural level with particular emphasis placed on early discrimination of different catecholamine-storing cells. The first granule-containing cells, phaeochromoblasts, were seen at day 15 of gestation migrating into the anlage of the cortex. These cells were characterized by a few small granules (80–120 nm in diameter) and a high nuclear to cytoplasmic ratio. Presumably due to differentiation into chromaffin cells, they were no longer present after the eighth postnatal day. Maturation of phaeochromoblasts was indicated by an increase in number and size of their storage granules and a decrease in the nuclear to cytoplasmic ratio. Noradrenaline and adrenaline cell types were first clearly discernible at day 21 of gestation. Another cell type, a giant cell, was also recognized at this stage. In the adult animal, noradrenaline, two morphologically different types of adrenaline, and small granule-containing cells were observed.By applying acetylcholinesterase histochemistry, it was found that at day 17 of gestation a small population of granule-storing cells showed strong positive staining in the endoplasmic reticulum. In the adult animal this cell type was further characterized by small-storage granules. Other chromaffin cells began to show weak staining within the endoplasmic reticulum at day 19 of gestation. This staining appeared more frequently within adrenaline than noradrenaline cells. However, even in the adult animal many cells of both types were completely negative.It is concluded that acetylcholinesterase histochemistry is a useful method for early discrimination of small granule-containing cells in the developing rat adrenal medulla.Supported by grants from the Deutsche Forschungsgemeinschaft  相似文献   

17.
Somatostatin-like immunoreactivity was detected within the adrenal gland of the cat using specific monoclonal antibodies. Immunohistochemical studies demonstrated a few somatostatin-immunoreactive nerve fibers within the adrenal medulla. In addition, a large population of chromaffin cells in the cat adrenal medulla displayed intense somatostatin-like immunoreactivity. Similar cells were not observed in rat or guinea pig adrenal glands, although they were found in human material. The somatostatin-positive cells in the cat adrenal medulla often possessed short immunoreactive processes similar to those seen in somatostatin-immunoreactive paracrine cells of the gut. Characterization of the somatostatin-like immunoreactivity of the cat adrenal by high performance liquid chromatography and radioimmunoassay indicated that somatostatin-28 may account for over 90% of the observed immunoreactivity. It is suggested that somatostatin-28 may have a paracrine or endocrine role in the feline adrenal medulla.  相似文献   

18.
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intraadrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.  相似文献   

19.
Summary The distribution of adrenaline, noradrenaline, aliesterases and non-specific cholinesterases in the cortical and medullary cells and that of ascorbic acid in the cortex have been studied histochemically in sections of adrenal glands from embryonic, juvenile and adult chicken. Both the catecholamines are secreted by the embryonic medulla from the 11th day of incubation but noradrenaline is the more abundant of the two hormones at all stages and it is secreted by the majority of chromaffin cells. There is a tendency for the adrenaline-secreting cells to predominate in the subcapsular layer of the medulla. Both types of chromaffin cells reveal considerable cholinesterase activity consistently from the second half of incubation period onwards.A high concentration of aliesterases and ascorbic acid are developed and maintained in the cortical cords from the time the cortex begins secretory activity, namely, the 10-day incubation stage. Lower concentrations of cholinesterases are also present in the cells of the cortex. The cords of the peripheral zone of cortex show higher concentrations of both the enzymes and ascorbic acid than those of the central zone.From a thesis submitted to McGill University, Montreal, Canada in 1963 in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The work was done during tenure of a Canadian Commonwealth Scholarship.  相似文献   

20.
Summary The ultrastructural localization of the glycoprotein D2 in rat adrenal gland was investigated using immunohistochemical methods, and D2 localization in cultures of adult bovine chromaffin cells was studied by immunofluorescence. D2 was found to be situated on nerve fibers passing through the adrenal cortex and in the medulla zone, and also on the surface of all chromaffin cells. In addition, it was strongly expressed on the surface of glial (Schwann) cells. Cortical cells were unreactive to the antiserum. In cultures, all adrenalin and noradrenalin [dopamine--hydroxylase (DBH)-positive] cells were surface labelled for D2. A less frequent second cell type was recognized in vitro which was DBH negative but D2 positive. Such cells were presumed to be Schwann cells. These data are discussed in terms of the developmental origin of the cells and with regard to the putative functional rôle of D2 in cell adhesion phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号