首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In certain lines of hepatoma tissue culture (HTC) cells, glutamine synthetase (EC 6.3.1.2) specific activity is increased 2.5- to 3-fold by the addition of glucocorticoids to the growth media. Actinomycin D blocks both the induction and deinduction of glutamine synthetase by glucocorticoids, suggesting a requirement of RNA synthesis for both processes. Using an antiserum raised against purified rat liver glutamine synthetase, we have precipitated radiolabeled glutamine synthetase from HTC cells. Electrophoresis of the immunoprecipitates on sodium didecyl sulfate-acrylamide gels isolates the subunit of glutamine synthetase and permits the radioactivity in the glutamine synthetase band to be quantitated. Using this technique, we have investigated the effect of dexamethasone, a synthetic glucocorticoid, on the rates of synthesis and degradation of glutamine synthetase. Dexamethasone (10(-7) M) increases the rate of synthesis of glutamine synthetase 2- to 3-fold but has no effect on the rate of glutamine synthetase degradation. The rates of total cell protein synthesis and degradation are not significantly affected by dexamethasone. The presence of actinomycin D at the time of removal of dexamethasone from induced cells prevents the fall in the induced rate of synthesis of glutamine synthetase normally seen when the inhibitor is removed from the culture medium. The regulation of glutamine synthetase by dexamethasone has been compared to the regulation of another dexamethasone-inducible enzyme in HTC cells, tyrosine aminotransferase, and been found to be similar in all parameters studied.  相似文献   

2.
We compared the ability of human leukemia cell lines of various origins to grow in glutamine-deficient media. The growth of B lymphoblastoid cell lines, including promyelocytic HL-60, is highly dependent on glutamine, whereas T-cell lines are able to proliferate in glutamine-free media. Such glutamine dependency has a good inverse correlation with the activity of glutamine synthetase. Moreover, glutamine synthetase can be induced in glutamine-deficient media, especially in glutamine-independent cells. In HL-60 cells, glutamine deprivation results in the decrease of both ATP and dATP levels. The addition of adenine to the culture medium abolishes these changes without restoring cell growth, indicating that the effects of glutamine deprivation on cell growth cannot be fully explained by the perturbation of adenine nucleotide pools.  相似文献   

3.
Summary Phosphinothricin is a non-selective herbicide which inhibits glutamine synthetase (EC 6.3.1.2) activity causing an overaccumulation of ammonia in higher plants. Alfalfa (Medicago sativa L) shoot tissue and petiole-derived callus exposed to phosphinothricin show 50 and 70% reductions, respectively, in glutamine synthetase activity with a concomitant rise of 10 and 20 fold, respectively, in endogenous ammonia. The diffusibility of ammonia may limit the use of a detoxifying gene, phosphinothricin acetyltransferase, as a selectable marker for alfalfa transformation. However, the addition of up to 40 times the standard levels of ammonium nitrate to the culture media used in this study had no effect on callus growth, although glutamine synthetase activity was inhibited by 50% and endogenous ammonia increased 27 fold. Therefore, ammonia accumulation may not be the primary cause of cell death in alfalfa after exposure to phosphinothricin. It follows that diffusion of ammonia from cell to cell would not restrict the selection for phosphinothricin acetyltransferase transformed cells, thereby indicating that this enzyme could be used as a selectable marker in transformation experiments.Abbreviations PPT Phosphinothricin - PAT Phosphinothricin acetyltransferase  相似文献   

4.
Biochemistry textbooks and cell culture experiments seem to be telling us two different things about the significance of external glutamine supply for mammalian cell growth and proliferation. Despite the fact that glutamine is a nonessential amino acid that can be synthesized by cells from glucose‐derived carbons and amino acid‐derived ammonia, most mammalian cells in tissue culture cannot proliferate or even survive in an environment that does not contain millimolar levels of glutamine. Not only are the levels of glutamine in standard tissue culture media at least ten‐fold higher than other amino acids, but glutamine is also the most abundant amino acid in the human bloodstream, where it is assiduously maintained at approximately 0.5 mM through a combination of dietary uptake, de novo synthesis, and muscle protein catabolism. The complex metabolic logic of the proliferating cancer cells' appetite for glutamine—which goes far beyond satisfying their protein synthesis requirements—has only recently come into focus. In this review, we examine the diversity of biosynthetic and regulatory uses of glutamine and their role in proliferation, stress resistance, and cellular identity, as well as discuss the mechanisms that cells utilize in order to adapt to glutamine limitation.  相似文献   

5.
Glial cells were isolated from 1-week-old rat brain and cultured in a serum-free medium supplemented with the hormones insulin, hydrocortisone, and triiodothyronine. After 1 week in culture the cell population consisted mainly of galactocerebroside-positive cells (GC+; oligodendrocytes), the remainder of the cells being positive for glial fibrillary acidic protein (GFAP+; astrocytes). Oligodendrocytes were selectively removed from the cultures by complement-mediated cytolysis. The activities of glutamine synthetase and of various marker enzymes were measured in the nonlysed cells remaining after complement treatment of the cultures and in the culture medium containing proteins of the lysed cells. We found that the cellular activity of glutamine synthetase decreased in parallel with the lysis of GC+ cells and that the activity of glutamine synthetase in the supernatant increased. The activity of glycerol-3-phosphate dehydrogenase, a marker enzyme for oligodendrocytes, was no longer detectable in complement-treated cultures and the activity of glutamine synthetase was markedly lowered, whereas the activity of lactate dehydrogenase was as high as in untreated cultures. The location of glutamine synthetase both in oligodendrocytes and in astrocytes was confirmed by double-label immunocytochemistry with antisera against glutamine synthetase, GC, and GFAP. We conclude that in this culture system glutamine synthetase is expressed in both types of glial cells and that the activity of lactate dehydrogenase is at least one order of magnitude higher in astrocytes than in oligodendrocytes.  相似文献   

6.
7.
Glutamine accelerates the degradation of glutamine synthetase in hepatoma tissue culture cells. Compounds structurally related to glutamine were tested for their ability to mimic or antagonize this effect of glutamine. 6-Diazo-5-oxo-L-norleucine, like glutamine depressed the activity of glutamine synthetase in hepatoma tissue culture cells. L-Methionine sulfone, albizzine, L-methionine sulfoxide, L-gamma-glutamyl hydrazide and gamma-N-methyl-L-glutamine (listed in order of decreasing potency) were antagonists which prevented the effect of glutamine on glutamine synthetase activity. These antagonists had little effect on glutamine transport or protein synthesis of hepatoma tissue culture cells and their effects were reversible. The effects of compounds on gluatmine synthetase activity in cell-free extracts of the cells were examined. Diazo-oxonorleucine and albizzine inhibited neither the transferase nor the synthetase activity of glutamine synthetase. This observation is interpreted to mean that the glutamine-binding site involved in the regulation of glutamine synthetase activity of hepatoma tissue culture cells is not the active site of the enzyme.  相似文献   

8.
9.
The effect of glutamine depletion on the death of attached Chinese hamster ovary (CHO) cells was investigated. Experiments were performed using an anchorage dependent CHO cell line expressing gamma-IFN and a second cell line obtained by transfection of that cell line with the human bcl-2 (hbcl-2). Either cell line could grow in media devoid of glutamine with minimal cell death due to endogenous glutamine synthetase activity that allowed cells to synthesize glutamine from glutamic acid in the medium. However, compared to control cultures in glutamine-containing media, the cell growth rate in glutamine-free media was slower with an increased fraction of cells distributed in the G0/G1 phase. The slower rate of cell cycling apparently protected the cells from entering apoptosis when they were stimulated to proliferate in an environment devoid of other protective factors, such as serum or over-expressed hbcl-2. The depletion of both glutamine and glutamic acid did cause cell death, which could be mitigated by hbcl-2 over-expression.  相似文献   

10.
We have investigated the dependence of the rate of lactic acid production on the rate of Na(+) entry in cultured transformed rat Müller cells and in normal and dystrophic (RCS) rat retinas that lack photoreceptors. To modulate the rate of Na(+) entry, two approaches were employed: (i) the addition of L-glutamate (D-aspartate) to stimulate coupled uptake of Na(+) and the amino acid; and (ii) the addition of monensin to enhance Na(+) exchange. Müller cells produced lactate aerobically and anaerobically at high rates. Incubation of the cells for 2-4 h with 0.1-1 mM L-glutamate or D-aspartate did not alter the rate of production of lactate. ATP content in the cells at the end of the incubation period was unchanged by addition of L-glutamate or D-aspartate to the incubation media. Na(+)-dependent L-glutamate uptake was observed in the Müller cells, but the rate of uptake was very low relative to the rate of lactic acid production. Ouabain (1 mM) decreased the rate of lactic acid production by 30-35% in Müller cells, indicating that energy demand is enhanced by the activity of the Na(+)-K(+) pump or depressed by its inhibition. Incubation of Müller cells with 0.01 mM monensin, a Na(+) ionophore, caused a twofold increase in aerobic lactic acid production, but monensin did not alter the rate of anaerobic lactic acid production. Aerobic ATP content in cells incubated with monensin was not different from that found in control cells, but anaerobic ATP content decreased by 40%. These results show that Na(+)-dependent L-glutamate/D-aspartate uptake by cultured retinal Müller cells causes negligible changes in lactic acid production, apparently because the rates of uptake are low relative to the basal rates of lactic acid production. In contrast, the marked stimulation of aerobic lactic acid production caused by monensin opening Na(+) channels shows that glycolysis is an effective source of ATP production for the Na(+)-K(+) ATPase. A previous report suggests that coupled Na(+)-L-glutamate transport stimulates glycolysis in freshly dissociated salamander Müller cells by activation of glutamine synthetase. The Müller cell line used in this study does not express glutamine synthetase; consequently these cells could only be used to examine the linkage between Na(+) entry and the Na(+) pump. As normal and RCS retinas express glutamine synthetase, the role of this enzyme was examined by coapplication of L-glutamate and NH(4) (+) in the presence and absence of methionine sulfoximine, an inhibitor of glutamine synthetase. In normal retinas, neither the addition of L-glutamate alone or together with NH(4) (+) caused a significant change in the glycolytic rate, an effect linked to the low rate of uptake of this amino acid relative to the basal rate of retinal glycolysis. However, incubation of the RCS retinas in media containing L-glutamate and NH(4)(+) did produce a small (15%) increase in the rate of glycolysis above the rate found with L-glutamate alone and controls. It is unlikely that this increase was the result of conversion of L-glutamate to L-glutamine, as it was not suppressed by inhibition of glutamine synthetase with 5 mm methionine sulfoximine. It appears that the magnitude of Müller cell glycolysis required to sustain the coupled transport of Na(+) and L-glutamate and synthesis of L-glutamine is small relative to the basal glycolytic activity in a rat retina.  相似文献   

11.
Julie V. Cullimore 《Planta》1981,152(6):587-591
A 70% reduction in glutamine synthetase (GS) activity was observed within 5 min when 5 mM NH3 and darkness was applied to steady-state cells of Chlamydomonas utilising NO3. The enzyme was reactivated in vivo by reillumination of the culture and in vitro by treatment with thiol reagents. The activity modulations affected the synthetase and transferase activities similarly and were not influenced by protein synthesis inhibitors. Deactivation of GS was also observed when steady-state cells were treated with an uncoupler of phosphorylation, carbonylcyanide m-chlorophenylhydrazone (CCCP) or inhibitors of the electron transport chain but under these conditions the activity modulation affected over 90% of the activity and was irreversible. The mechanism of the physiological deactivation of GS is discussed in relation to both the in vivo and in vitro findings.Abbreviations GS glutamine synthetase (EC 6.3.1.2.) - GSs glutamine synthetase, synthetase activity - GSt glutamine synthetase, transferase activity - CAP chloramphenicol - CCCP carbonylcyanide m-chlorophenyl hydrazone - CHX cycloheximide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DSPD disalicylidene propanediamine - DTT dithiothreitol - GSH reduced glutathione  相似文献   

12.
When cultured mouse cells strain L are incubated in the presence of glutamine (normally a component of their growth medium) both the transferase (γ-glutamyl transfer) and the synthetase (acyl activation) activities of glutamine synthetase are equally depressed, the transferase being on the whole 5 times higher than the synthetase activity. Whereas the depressive action of glutamine is established within 24 hours, the increase in enzymatic activity following withdrawal of glutamine is markedly slower. The action of glutamine involves two mechanisms, neither of which requires protein or RNA synthesis: (a) inhibition of the synthesis of glutamine synthetase; and (b) promotion of destruction of preexisting enzyme or complements of it.  相似文献   

13.
During the greening of etiolated rice leaves, total glutamine synthetase activity increases about twofold, and after 48 h the level of activity usually observed in green leaves is obtained. A density-labeling experiment with deuterium demonstrates that the increase in enzyme activity is due to a synthesis of the enzyme. The enhanced activity obtained upon greening is the result of two different phenomena: there is a fivefold increase of chloroplastic glutamine synthetase content accompanied by a concommitant decrease (twofold) of the cytosolic glutamine synthetase. The increase of chloroplastic glutamine synthetase (GS2) is only inhibited by cycloheximide and not by lincomycin. This result indicates a cytosolic synthesis of GS2. The synthesis of GS2 was confirmed by a quantification of the protein by an immunochemical method. It was demonstrated that GS2 protein content in green leaves is fivefold higher than in etiolated leaves.Abbreviations AbH heavy chain of antibodies - AbL light chain of antibodies - AP acid phosphatase - CH cycloheximide - G6PDH glucose-6-phosphate dehydrogenase - GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 chloroplastic glutamine synthetase - LC lincomycin - NAD-MDH NAD malate dehydrogenase - NADP-G3PDH NADP glyceraldehyde-3-phosphate dehydrogenase  相似文献   

14.
The specific activity of glutamine synthetase in cultured Chinese hamster cells is inversely related to the concentration of glutamine in the surrounding solution. Enzyme specific activity increases 8- to 10-fold when glutamine is removed from serum-free F12 growth media. The induction of glutamine synthetase activity occurs only after glutamine removal and not after the removal of other amino acids (methionine, leucine, or isoleucine). The analysis of the glutamine-mediated decrease in glutamine synthetase activity has been simplified by the finding that depression proceeds in nutrient-free buffered saline solution (141 mM NaCl, 5.4 mM KCl and 30 mM Tricine (pH 7.4). Under these conditions, 0.1 mM cyanide blocks glutamine-mediated depression. The cyanide inhibition is reversed by the addition of 1.0 mM glucose which suggests that ATP is required for depression. Glutamine-mediated depression is temperature-dependent, occurring between 25 and 45 degrees with an optimum rate at 37 degrees. Studies of the time course of induction and depression as a function of glutamine concentration suggest that glutamine regulates the rate at which the enzyme is either modified or degraded. We have employed an antibody prepared against homogeneous Chinese hamster liver glutamine synthetase to measure the amount of glutamine synthetase protein in extracts of cells containing induced or depressed levels of enzyme activity. A highly sensitive immunoprecipitation procedure enables quantitation of nanogram amounts of glutamine synthetase protein. Glutamine synthetase in cell extracts containing induced levels of enzyme activity possesses the same molecular specific activity (ratio of activity to antigenicity) as homogeneous Chinese hamster liver glutamine synthetase. The molecular specific activity of glutamine synthetase is almost the same in extracts of cells with depressed levels of enzyme obtained by growth for short (2 hours) and long (24 hours) times in the presence of glutamine. These data suggest that glutamine-mediated depression of glutamine synthetase results from degradation of enzyme molecules.  相似文献   

15.
Confluent 3T3-L1 Swiss mouse fibroblasts acquired morphological and biochemical characteristics of adipocytes when maintained in medium containing 10% calf serum and added insulin. Identical cultures maintained in the absence of added insulin did not differentiate into adipocytes. Incubation of confluent cultures for 48 h with 0.25 μm dexamethasone and 0.5 mm 1-methyl-3-isobutylxanthine yielded subsequent adipocyte differentiation when the culture medium contained 10% fetal calf serum. In contrast, differentiation did not occur when similarly treated cultures were maintained in medium containing 10% calf serum. The increase in glutamine synthetase which occurred during adipocyte differentiation was closely associated with an increased rate of triglyceride synthesis from acetate, with increased protein, and with increases in the activities of glycerol-3-P dehydrogenase and glucose-6-P dehydrogenase. Glutamine synthetase activity remained undetectable in insulin-treated confluent 3T3-C2 cells maintained under conditions which yielded high glutamine synthetase activity in 3T3-L1 cells. (3T3-C2 cells did not differentiate into adipocytes.) Glutamine accumulated in the culture medium of 3T3-L1 adipocytes, but it did not accumulate in the medium from identically treated 3T3-C2 cells. A half-maximal increase in glutamine synthetase specific activity occurred at a culture medium insulin concentration of 10 ng/ml. Neither adipocyte differentiation nor the rise in glutamine synthetase activity were substantially altered by maintaining confluent cultures in medium lacking added glutamine. Incubation of confluent 3T3-L1 cultures with 3 mml-methionine sulfone, a reversible inhibitor of glutamine synthetase, increased by two-fold both the activity and the cellular content of glutamine synthetase. Incubation of confluent 3T3-L1 cultures with 4 mml-glutamine and l-methionine-dl-sulfoximine, an irreversible inhibitor of glutamine synthetase activity, decreased glutamine synthetase activity to less than 5% of the activity in control cultures; however, neither cellular content of the enzyme nor synthesis rate of the enzyme were substantially altered. In the presence of added glutamine, neither methionine sulfone nor methionine sulfoximine had a significant effect on phenotypic adipocyte conversion. By contrast, when confluent cultures were incubated with methionine sulfoximine and no added glutamine, glutamine synthetase remained absent and there was no evidence of adipocyte conversion. Our data indicate (1) that added insulin is required for adipocyte differentiation of 3T3-L1 cells maintained in medium containing calf serum, (2) that glutamine synthetase activity increases during adipocyte conversion regardless of the culture conditions employed to achieve differentiation, and (3) that glutamine synthetase activity may be required for adipocyte differentiation when cultures are maintained in medium lacking added glutamine.  相似文献   

16.
Abstract It was shown that glutamine synthetase of purple sulfur bacterium Thiocapsa roseopersicina is regulated by covalent modification. This conclusion is made on the basis of results showing that: (i) incubation of cells under conditions of nitrogen deprivation in the light lead to an increase of glutamine synthetase activity; (ii) addition of ammonium to nitrogen-starved cell suspensions caused a rapid decrease of glutamine synthetase activity; (iii) inhibition of glutamine synthetase by feedback modifiers was higher in ammonium-treated cells than in those starved for a nitrogen source; (iv) treatment of purified glutamine synthetase and cell-free extracts with phosphodiesterase was accompanied by an increase of glutamine synthetase activity, indicating the cleavage of modifying residues covalently bound to glutamine synthetase molecules.  相似文献   

17.
Glutamine synthetase (EC 6.3.1.2) activity of hepatoma tissue culture cells is elevated by cortocisteroids and depressed by glutamine (Kulka, R.G., Tomkins, G.M. and Crook, R.B. (1972) J. Cell Biol., 54, 175–179). The transfer of cells from high (1–5 mM) to low (0.2–0.4 mM) concentrations of glutamine causes a marked increase in glutamine synthetase activity. The addition of a glutamine antagonist, methionine sulfone (1 mM) to cells suspended in high (1 mM) concentrations of glutamine also causes an increase of glutamine synthetase activity which is greater than that elicited by the transfer of cells to low concentrations of glutamine. Rates of synthesis of glutamine synthetase have been measured by radioimunoprecipitation in hepatoma tissue culture cells incubated under various conditions. Incubation of cells with the synthetic corticosteroid hormone, dexamethasone, markedly stimulates the relative rate of glutamine synthetase biosynthesis. Glutamine, or its analogue, methionine sulfone, have no effect on the relative rate of synthesis of the enzyme. However, total protein and RNA synthesis increase markedly with increasing external glutamine concentration in the range 0–1 mM. Methionine sulfone (1 mM) inhibits the degradation of glutamine synthetase in the presence of 1 mM glutamine. The data are consistent with the conclusion that the corticosteroid, dexamethasone, elevates glutamine synthetase activity by stimulating its rate of synthesis, whereas methionine sulfone elevates glutamine synthetase activity by inhibiting the glutamine-stimulated degradation of preformed enzyme.  相似文献   

18.
Glutamine synthetase activity was investigated in developing primary astroglial cultures established from newborn mouse cerebral hemispheres. Between the 2nd and 4th week of culture there was little change in activity under our standard culturing conditions; however, when hydrocortisone (10 microM) was added to the cultures for 48 h, the enzyme activity increased two- to fourfold, depending upon the age of the culture, with maximum response in 2-week-old cultures. The addition of dibutyryl cyclic AMP (dBcAMP) to the culture medium caused morphological differentiation of the astroglial cells but eliminated the response of the cells to hydrocortisone. Culturing in elevated serum levels, which delays morphological differentiation and inhibits astroglial cytodifferentiation after exposure to dBcAMP, shifted the time of maximal response to hydrocortisone from 2 to 3 weeks and prevented the abolishment of glutamine synthetase induction by dBcAMP. The induction of glutamine synthetase by hydrocortisone was prevented by actinomycin D (0.5 microgram/ml), indicating its dependence upon RNA and protein synthesis. The present work thus confirms reports in the literature that hydrocortisone induces glutamine synthetase in neural tissues, but differs from the findings of Moscona and co-workers in the chick retina that intact tissues are required for the induction to occur.  相似文献   

19.
Abstract: Regulation of the biosynthesis of glutamine synthetase was studied in neuroblastoma cells (Neuro-2A) by use of a recently developed, sensitive radioisotopic assay. The removal of glutamine from the culture medium of these cells for 24 h resulted in a 10-fold increase in glutamine synthetase specific activity (15-fold after 2 weeks) compared with the basal level found in cells grown in the presence of 2 m M glutamine. Following the growth of these cells for 2 weeks in the presence of various concentrations of glutamine, a negative linear correlation was observed between the specific activity of glutamine synthetase (from 1.7 to 0.14 unit/mg) and the concentration of glutamine in the growth medium (from 0.5 to 2 m M ). Cycloheximide or actinomycin D blocked the increase in glutamine synthetase activity observed in the absence of glutamine. These results suggest that the removal of glutamine led to the induction of glutamine synthetase by stimulating new enzyme synthesis. The enzyme was not degraded, but only diluted, by growth upon readdition of glutamine to the medium. The influence of glutamine depletion is also reported for C-6 glioma cells and glial cells in primary cultures.  相似文献   

20.
The activity of glutamine synthetase (GS) was investigated during culture development of Bacillus polymyxa CN 2219 and its asporogenous mutant deficient in protease production. At 28°C, temperature permissive for sporulation, the glutamine synthetase activity was found to decline in the wild type cells which acquire the competence for sporulation. This decline was not observed in the asporogenous mutant. Incubation at 37°C (temperature non permissive) suppressed sporulation in the wild type and maintained glutamine synthetase activity. The involvement of glutamine synthetase in the repression of sporulation was further confirmied by the action of l-methionine sulfoximine a specific inhibitor of glutamine synthetase, which overcomes the catabolite repression by ammonium and induces sporulation. Intracellular proteases were measured as early markers of the initiation of sporulation and were found to be induced during sporulation.Abbreviations GS glutamine synthetase - MSO l-methionine sulfoximine - GYS glucose-yeast extract-salts - GT -glutamyltransferase - PMSF phenylmethylsulfonylfluoride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号