首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between rain flow into the soil and forest structure was investigated in a dense deciduous Betula ermanii forest in northern Japan. The forest floor was covered with dwarf bamboo Sasa kurilensis. Observation was conducted from mid-July to late October in 1998. Leaf fall of Betula started in early September and ended in late October. Stemflow was proportional to rainfall and tree size [diameter at breast height (DBH)], and for the same rainfall, stemflow increased with leaf fall. On the contrary, throughfall decreased with leaf fall. Throughfall was intercepted also by Sasa in proportion to its leaf area. Multiple linear regression analysis revealed that stemflow and throughfall of Betula and Sasa were predictable as functions of rainfall and forest structural characteristics, such as DBH, tree density, and stand leaf mass. The rain interception by plants tended to decrease from summer to autumn, but the difference in the interception was about 2% between July (fully expanded leaves) and late October (lack of leaves). About 96 and 87% of rainfall reached the above- and below-Sasa layers, respectively. Thus, this study showed that understory Sasa is a major component of rain interception within the stand and that rain flow into the soil can be estimated by using rainfall and the forest structural parameters, such as DBH, tree density and stand leaf mass.  相似文献   

2.
We investigated the changes in soil microbial biomass C (MBC), microbial biomass N (MBN) and N mineralization in Sasa kurilensis-present (SP) and S. kurilensis-removed (SR) stands in a Betula ermanii forest. The mean levels of MBC and MBN were significantly higher in the SR stand than in the SP, which may have positively influenced the N-mineralization rate as depicted by a significant positive correlation between these variables and the N-mineralization rate. N immobilization and subsequent N release along with decreased use of available soil N due to S. kurilensis removal may have ensured greater N availability in the SR stand.  相似文献   

3.
The survivorship of a monocarpic bamboo grass,Sasa kurilensis, during the early regeneration process was documented by a 10 year observation of the seedling population after mass flowering in the Hakkoda Mountains, northern Japan. Three phases were recognized: the establishment, density-stable and thinning phases. The mortality of the densely germinated seedlings (932.9m−2 in aBetula ermanii forest and 1222.3 m−2 in aSasa grassland) was high, up to 0.5 year−1, in the establishment phase (0–1 year after germination) and low in the density-stable phase (1–3 years after germination). After reaching full density state, the seedling population showed a nearly constant mortality of 0.18 year−1 due to self-thinning (the thinning phase). The high C/F ratio presumably caused suppressed seedlings to die. Recovery of theS. kurilensis population was estimated to requireca 20 years in the study plots, judging from the height growth and the decrease in culm density of the seedling population. The illuminance on the ground was higher in the flowered population than in the unflowered one for 5 years after mass death. The duration of high ground illuminance is an important factor affecting the dynamics of forests withSasa undergrowth, because tree seedlings need to establish under high ground illuminance for the successful regeneration of the forests.  相似文献   

4.
Seedling recruitment and survivorship of beech (Fagus crenata) were studied with special reference to the simultaneous death of undergrowing bamboo (Sasa kurilensis). The survival rate of beech seedlings on the floor whereSasa had withered was much higher than that on the floor whereSasa survived. Damping off caused the largest mortality among beech seedlings. However, the allocation pattern of matter to different parts of the seedlings indicated that their survival was greatly affected by production economy. The dense cover of dwarf bamboo prevented the establishment of beech seedling banks on the forest floor. The interval between the times when simultaneous death ofSasa occur and the length of its recovery period are thus important factors controlling the dynamics of beech forests in Japan.  相似文献   

5.
We measured the vertical distribution and seasonal patterns of fine-root production and mortality using minirhizotrons in a cool–temperate forest in northern Japan mainly dominated by Mongolian oak (Quercus crispula) and covered with a dense understory of dwarf bamboo (Sasa senanensis). We also investigated the vertical distribution of the fine-root biomass using soil coring. We also measured environmental factors such as air and soil temperature, soil moisture and leaf area indices (LAI) of trees and the understory Sasa canopy for comparison with the fine-root dynamics. Fine-root biomass to a depth of 60 cm in September 2003 totaled 774 g m−2, of which 71% was accounted for by Sasa and 60% was concentrated in the surface soil layer (0–15 cm), indicating that understory Sasa was an important component of the fine-root biomass in this ecosystem. Fine-root production increased in late summer (August) when soil temperatures were high, suggesting that temperature partially controls the seasonality of fine-root production. In addition, monthly fine-root production was significantly related to Sasa LAI (P<0.001), suggesting that fine-root production was also affected by the specific phenology of Sasa. Fine-root mortality was relatively constant throughout the year. Fine-root production, mortality, and turnover rates were highest in the surface soil (0–15 cm) and decreased with increasing soil depth. Turnover rates of production and mortality in the surface soil were 1.7 year−1 and 1.1 year−1, respectively.  相似文献   

6.
Regeneration of natural forests was studied in the Nakagawa Experiment Forest of Hokkaido University using age distribution surveys made by the clear felling method. In Plot 1 (30 m × 65 m),Abies sachalinensis dominated the canopy layer but there were also a fewBetula ermanii trees.Sasa senanensis densely covered the forest floor. Most of the canopy trees were from 122 to 195 years old. Seedlings younger than 50 years old ofA. sachalinensis were found on fallen logs and root bases. There were, however, few trees from 50 to 120 years old. The present canopy trees seemed to have regenerated after competitive pressure from old canopy andSasa disappeared 180 years ago. Plot 2 (50 m × 100 m) on serpentinite soil was dominated byPicea glehnii. Sasa kulirensis covered the floor but not as densely asS. senanensis in Plot 1. The ages ofP. glehnii ranged from 1 to 586 years old, and the age distribution ofA. sachalinensis was L-shaped. A small gap in the canopy formed about 290 years ago, and it gradually extended. Conifers regenerated continuously in the extending gap butB. ermanii did not. One hundred thirty years ago, part of Plot 2 was again destroyed andA. sachalinensis andB. ermanii regenerated. Thus, two types of regeneration were found. One regenerated both conifers andBetula after a sudden disturbance of canopy layer or death ofSasa, and the other, under an extending gap, regenerated only conifers.  相似文献   

7.
We surveyed plant community development at the abandoned Ogushi sulfur mine. We found seven communities dominated by the following respective species: Deschampsia flexuosa, Miscanthus sinensis, shrub willow, Gaultheria miquelianaBetula ermanii, Sasa senanensisBetula ermanii, willow–Betula ermanii, and Sasa kurilensisAbies veitchii. We examined the succession of these communities, in which younger communities of low height and ground cover contained seedlings of the successive communities that were taller and had higher ground cover. To understand the development of these different communities, we surveyed damage from mining pollution and effects of immature soils formed by landslides. The average pH (H2O) was 4.12, and aluminum concentrations were not sufficiently high to damage plant growth, except in areas where sulfur had been mined. The organic carbon and nitrogen content in soil samples were very low because of a delay in soil development caused by a large landslide in 1937. Hence, succession was positively correlated with the soil development stage. The delay in soil development after a large landslide influenced the seven successional steps of the plant communities, but mineral poisons at the abandoned Ogushi sulfur mine had no effect on succession.  相似文献   

8.
To evaluate the effect of understory dwarf bamboo (Sasa senanensis) on soil respiration in forest ecosystems, we compared soil respiration rates between four deciduous broad-leaved forest sites representing two levels of understory Sasa (with and without) and two levels of forest stand age (50-year-old stand and 1-year-old stand after clearcut). The understory Sasa enhances the soil respiration rate both before and after the clearcutting of deciduous broad-leaved forest. The Sasa sites had larger total belowground biomass compared with the non-Sasa sites, which could be attributed to Sasa presence. Our results also suggest that clearcutting decreases temperature-normalized soil respiration rates (R 15) and temperature sensitivity (Q 10) in both Sasa and non-Sasa ecosystems. Clearcutting significantly reduced the fine root biomass of trees and Sasa. The fine roots of trees and Sasa had high specific respiration rates compared with larger roots and rhizomes at Sasa and non-Sasa sites, respectively. Therefore, we hypothesize that the loss of fine roots after clearcutting is responsible for the reduction in soil respiration rate. A comparison with other studies revealed a positive linear relationship between total (tree and Sasa) fine root biomass and R 15, suggesting that fine root biomass controls soil respiration at the landscape scale. The Q 10 value is also likely to be related to fine root biomass, although the relationship was not significant. We conclude that understory Sasa increases belowground biomass, especially fine roots, and the spatial variation in soil respiration at the landscape scale.  相似文献   

9.
Three species of Tetraploa collected from Sasa, or bamboos, are described and illustrated. Among them, T. curviappendiculata on Sasa kurilensis and T. longissima on Pleioblastus chino are compared with hitherto known species and described as new species. In the nomenclature, T. javanica is substituted for T. biformis, formerly reported from the dead bark of a broad-leaved tree in Japan, as a correct name.  相似文献   

10.
Four Phaeosphaeria species on bamboos are reported. Leptosphaeria lelebae on culms of Bambusa multiplex is synonymized with P. oryzae. A Phaeosphaeria sp. on leaves of Sasa kurilensis is noted to have some similarities to Leptosphaeria sasae. Cultural characteristics of P. brevispora collected from culms of Sasa sp. are first recorded. Phaeosphaeria bambusae on leaves of Pleioblastus simoni is redescribed. In addition, the history of taxonomic studies on bambusicolous fungi in Japan is briefly reviewed.  相似文献   

11.
We have investigated the factors influencing the distribution of co-occurring two dwarf bamboo species, Sasa kurilensis (Ruprecht) Makino et Shibata and S. senanensis (Franchet et Savatier) Rehder, within a conifer-broadleaved mixed stand managed with selection cutting in northern Japan. We first sought the possible determinant factors (physical environment and overstory conditions based on 30 years tree census data) deciding the dominant species in the plots (168 3.14m2 area). We then examined the effects of these factors on the culm density and height of the dominant species. Linear discriminant analysis indicated that physical environmental conditions are important in determining the distribution; S. kurilensis tended to dominate plots with steep slope, convex shape and deep snow in early spring. Multiple regression analyses showed that culm density and height decreased significantly on steep slopes for both species. Also, the sum of the basal area (BA) of surrounding conifers (7.5 m radius around the plot), as well as the change in BA over the previous 30 years, had a negative influence on the culm height of both species. A reduction in overstory trees, caused by natural or artificial canopy disturbances, would increase the dwarf bamboo biomass. The effects of physical environment and overstory conditions, working through the dominance of the two dwarf bamboo species, should be taken into account in understanding the dynamics of natural forests in this region.  相似文献   

12.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   

13.
Stand development and regeneration were studied during a 33-year period (1965-1998) in a 1-ha plot in a seral Picea glehnii forest in northern Japan. P. glehnii was mono-dominant in the upper canopy layer, but its understory trees were rarely found in 1965. Other species were scarcely observed in 1965. Many recruited saplings of Abies sachalinensis which had grown to > 5 cm diameter at breast height (DBH) by 1998 had become dominant in the understory layer. Mortality of P. glehnii canopy trees was low. Therefore, the stand basal area increased during the census period due to the growth of surviving canopy trees. Stand development brought about intense competition among trees by increasing local crowding for each tree, and promoted dominance of larger trees and suppression of smaller trees. Although growth rates of understory trees of the two conifers decreased with the increase in local crowding, the growth rate of A. sachalinensis was consistently higher than that of P. glehnii at all extents of local crowding. The recruitment rate (growing to 5 cm DBH) of the two conifers was less affected by local crowding. However, the number of recruits of P. glehnii was only about a quarter of that of A. sachalinensis during the census period because the regeneration of P. glehnii was largely restricted to fallen logs and within 1 m of the base of any live tree > 20 cm DBH. Therefore, our long-term study suggests that A. sachalinensis will dominate over P. glehnii in the seral forest because of higher recruitment and growth rates of the former than the latter in the understory.An erratum to this article can be found at  相似文献   

14.
Naoya Wada 《Oecologia》1993,94(3):403-407
The effects of dwarf bamboos (Sasa spp.) on the regeneration of trees in a natural hardwood forest were studied by analysing the spatial dispersion of seedlings and saplings of anemochores (Acer palmatum var. matsumurae, Fraxinus lanuginosa, and Carpinus laxiflora) and zoochores (Quercus mongolica var. grosseserrata and Q. serrata). Relative photosynthetic photon flux density at 10 cm above ground was significantly correlated with the coverage of dwarf bamboos (r=0.661, P<0.001). Seedlings were abundant and were randomly distributed in the anemochores, other than the shade-intolerant species C. laxiflora which was significantly more sparse in sites with dense Sasa than in sites where Sasa was rare. Distribution of saplings was also random in the shadetolerant anemochores A. palmatum var. matsumurae and F. lanuginosa but aggregated in sites with sparse Sasa in the shade-intolerant anemochore C. laxiflora. In contrast to the anemochores, seedlings of zoochores were very few and were distributed in sites with sparse Sasa. Saplings were also aggregated and negatively correlated with Sasa cover in the shade-intolerant species Q. serrata and the tolerant species Q. mongolica var. grosseserrata. The acorns put on the forest floor in a site with dense Sasa were quickly removed by small rodents such as Apodemus speciosus and A. argenteus. Trap census of rodents revealed that those mammals prefer the dense Sasa habitat to the sparse Sasa habitat. This suggests that the dwarf bamboos strongly affect the regeneration of zoochorous trees not only by shading the seedlings but also by providing habitats to acorn-feeding small mammals.  相似文献   

15.
Post-fire vegetation regeneration was studied for a 6-year period in a 13-year-old-artificial forest consisting of Larix kaempferi with a dense undergrowth of Sasa senanensis. The study site was classified into three fire severity categories according to the degree of Sasa senanensis scorching, that is, a high-severity category, a mid-severity category, and a low-severity category. Study plots were established in areas which fitted the criteria for each category, and in nearby unburned sites. A total of 41 woody species were newly emerged during the 6-year study period in the burned and unburned plots. Only a few seedlings and resprouts emerged in the unburned plots, while many seedlings emerged in the high-severity plots from the first year after fire onward. A high-severity fire that burns the rhizomes of Sasa is necessary for the vegetation recovery by germination of seed. Whereas the establishment of seedlings was restricted to a few years after fire, the regeneration through resprouting continued into the last year of observation. The survival time of resprouts was longer than that of seedlings, and the survival time of shade-tolerant species was longer than that of shade-intolerant species. In contrast, shade-intolerant species grew more rapidly than shade-tolerant species. The plants ability to exceed the maximum height of the Sasa before the bamboo recovers can be critical to the survival of shade-intolerant species. Because resprouts have a stronger resistance to the shade of Sasa than seedlings, the resprouts of shade-tolerant species play a major role in the re-establishment of woody species after fire in sites with considerable Sasa ground-cover.  相似文献   

16.
Forage biomass and habitat use of Sika deer (Cervus nippon) at a transmission-line corridor were studied at the foothills of Mt Goyo, northern Japan. Summer forage biomass in the corridor was five times greater than in the adjacentBetula grossa forest. Among the plants that increased in the corridor,Sasa nipponica (a dwarf bamboo), an important forage plant for Sika deer, was predominant. Winter utilization ofS. nipponica by Sika deer was slightly heavier in the corridor, and estimated removal ofSasa leaves was twice as great there as in the forest. However fecal pellets were more prevalent in the adjacent forest in winter. Sika deer seemed to use the transmission-line corridor as a feeding site and the adjacent forest as cover as it reduces wind speed. A transmission-line corridor is more beneficial than a large clear-cut area because it provides more forest edges.  相似文献   

17.
Tree-ring-width chronology of Betula ermanii was developed at the timberline (2,400 m a.s.l.) on Mount Norikura in central Japan, and climatic factors affecting the tree-ring width of B. ermanii were examined. Three monthly climatic data (mean temperature, insolation duration, and sum of precipitation) were used for the analysis. The tree-ring width of B. ermanii was negatively correlated with the December and January temperatures and with the January precipitation prior to the growth. However, why high temperatures and heavy snow in winter had negative effects on the growth of B. ermanii is unknown. The tree-ring width was positively correlated with summer temperatures during June–August of the current year. The tree-ring width was also positively correlated with the insolation duration in July of the current year. In contrast, the tree-ring width was negatively correlated with summer precipitation during July–September of the current year. However, these negative correlations of summer precipitation do not seem to be independent of temperature and insolation duration, i.e., substantial precipitation reduces the insolation duration and temperature. Therefore, it is suggested that significant insolation duration and high temperature due to less precipitation in summer of the current year increase the radial growth of B. ermanii at the timberline. The results were also compared with those of our previous study conducted at the lower altitudinal limit of B. ermanii (approximately 1,600 m a.s.l.) on Mount Norikura. This study suggests that the climatic factors that increase the radial growth of B. ermanii differ between its upper and lower altitudinal limits.  相似文献   

18.
To clarify the role of dense understory vegetation in the stand structure, and in carbon (C) and nitrogen (N) dynamics of forest ecosystems with various conditions of overstory trees, we: (i) quantified the above‐ and below‐ground biomasses of understory dwarf bamboo (Sasa senanensis) at the old canopy‐gap area and the closed‐canopy area and compared the stand‐level biomasses of S. senanensis with that of overstory trees; (ii) determined the N leaching, soil respiration rates, fine‐root dynamics, plant area index (PAI) of S. senanensis, and soil temperature and moisture at the tree‐cut patches (cut) and the intact closed‐canopy patches (control). The biomass of S. senanensis in the canopy‐gap area was twice that at the closed‐canopy area. It equated to 12% of total biomass above ground but 41% below ground in the stand. The concentrations of NO3? and NH4+ in the soil solution and soil respiration rates did not significantly change between cut and control plots, indicating that gap creation did not affect the C or N dynamics in the soil. Root‐length density and PAI of S. senanensis were significantly greater at the cut plots, suggesting the promotion of S. senanensis growth following tree cutting. The levels of soil temperature and soil moisture were not changed following tree cutting. These results show that S. senanensis is a key component species in this cool‐temperate forest ecosystem and plays significant roles in mitigating the loss of N and C from the soil following tree cutting by increasing its leaf and root biomass and stabilizing the soil environment.  相似文献   

19.
在温带湿润气候区东段不同立地条件下的红松人工林内设置面积为600 m~2(20 m×30 m)的70块矩形固定样地。在每个样地内,选取5颗最高且长势较好的优势木作为研究的对象木,用Voronoi图确定优势木相应的竞争木,测定每一块样地内优势木与竞争木之间的距离。采用Hegyi单木竞争指数模型,分析优势木在不同样地水平上的种内竞争强度,探讨林分生长因子、地形因子、土壤养分因子对优势木竞争指数的影响,并对这3类因子与优势木竞争指数进行相应的拟合和相关性分析。结果表明:红松人工林优势木竞争强度随着优势木胸径的增大而变小,并且两者之间的关系服从幂函数;红松优势木的竞争指数与其树高、胸径、冠幅呈极显著的相关关系(P<0.01);坡向、坡位、海拔对竞争指数影响极显著(P<0.01);红松人工林优势木竞争指数的大小与土壤氮磷钾含量均呈极显著的相关关系(P<0.01);pH值对优势木竞争指数的影响不显著。当红松人工林优势木平均胸径达到45cm,优势木平均树高和冠幅大于周围竞争木时,其对周围资源的利用程度增大,林木会发生自然稀疏现象,其所受的竞争压力减小。红松喜光性强,对水分的要求高,...  相似文献   

20.
R. Mulia  C. Dupraz 《Plant and Soil》2006,281(1-2):71-85
The spatial distribution of fine roots of two deciduous tree species was investigated in contrasting growing conditions in southern France. Hybrid walnut trees (Juglans regia×nigra cv. NG23) and hybrid poplars (Populus euramericana cv. I214) were both cultivated with or without annual winter intercrops for 10 years on deep alluvial soils. Soil samples for measuring the fine root distribution of both trees and crops were obtained by soil coring down to 3-m depth at several distances and orientations from the tree trunk. The distribution of live fine roots from walnut and poplar trees was patchy and sometimes unexpected. In the tree-only stands, fine root profiles followed the expected pattern, as fine root density decreased with increasing depth and distance from the tree trunk. However, many fine root profiles under intercropped trees were uniform with depth, and some inverse profiles were observed. These distributions may result from a high degree of plasticity of tree root systems to sense and adapt to fluctuating and heterogeneous soil conditions. The distortion of the tree root system was more pronounced for the walnut trees that only partially explored the soil volume: in the tree-only stand, the walnut rooting pattern was very superficial, but in the intercropped stand walnut trees developed a deep and dense fine root network below the crop rooting zone. The larger poplars explored the whole available soil volume, but the intercrop significantly displaced the root density from the topsoil to layers below 1 m depth. Most tree root growth models assume a decreasing fine root density with depth and distance from the tree stem. These models would not predict correctly tree–tree and tree–understorey competition for water and nutrients in 3D heterogeneous soil conditions that prevail under low-density tree stands. To account for the integrated response of tree root systems to such transient gradients in soils, we need a dynamic model that would allow for both genotypic plasticity and transient environmental local soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号