首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ALBINO3, a homologue of PPF1 in Arabidopsis, encodes a chloroplast protein, and is essential for chloroplast differentiation. In the present study, ALBINO3(−) transgenic plants exhibited a significant decrease in both the number of rosette leaves at bolting and the days before bolting, suggesting the important roles of ALBINO3 in regulating flowering during non-inductive short-day photoperiods. ALBINO3 mRNA was apparently accumulated in shoot apical meristem and floral meristems around the shoot apical meristem in wild-type plants. ALBINO3 might be predominantly involved in inducing the floral repression pathway by activating the expression of TFL1, and by suppressing the expression of LFY, respectively, in the shoot apical meristem. Moreover, the function of ALBINO3 in regulating flowering transition depended on the expression of CO and GA1, because ALBINO3 might function in the downstream integration of the photoperiod-dependent and the photoperiod-independent pathways. These results suggest that ALBINO3 may have an important integrative function in the flowering process in Arabidopsis.  相似文献   

3.
4.
5.
Early flowering 3 (ELF3) is a regulator to modulate photoperiod flowering in Arabidopsis. The homologs of ELF3 in rice and barley also have been identified essential for regulation of flowering time. In the current study, TaELF3 genes, homologs of ELF3 in bread wheat (Triticum aestivum L.), were cloned by a comparative genomics approach and located on homologous group 1 chromosomes, designated as TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL, respectively. A sequence-tagged site (STS) marker was developed based on sequence polymorphism at the TaELF3-1DL locus. A quantitative trait locus (QTL) for heading date (HD) co-segregating with TaELF3-1DL explained 7.7–20.6% of the phenotypic variance in a RIL mapping population derived from the Gaocheng 8901/Zhoumai 16 cross genotyped using the wheat 90K iSelect assay. The late HD allele of TaELF3-1DL was prevalently selected in China’s specific wheat-growing regions and other countries. This study produces novel information in better understanding HD and provides a reliable functional marker for molecular marker-assisted selection in wheat breeding.  相似文献   

6.
Zhong X  Dai X  Xv J  Wu H  Liu B  Li H 《Molecular biology reports》2012,39(6):6967-6974
A MADS box gene AGL20/SOC1 is a main integrator in Arabidopsis flowering pathway whose structure and function are highly conserved in many plant species. A soybean MADS box gene GmGAL1 (G lycine max A GAMOUS L ike 1) as a homolog of AGL20/SOC1, was cloned from soybean cultivar Kennong18 and its function was investigated in transgenic Arabidopsis lines. Sequence comparisons showed that the closest homolog gene to GmGAL1 is AGL20/SOC1 in Arabidopsis and VuSOC1 in Vigna unguiculata. We investigated the expression level of GmGAL1 using quantitative real-time PCR, and the result showed that GmGAL1 was regulated by a circadian mechanism and its expression oscillated at a cycle of 24 h. The expression level of GmGAL1 was fluctuated in diverse tissues/organs and developmental stages. Considering its expression can be detected in different tissues throughout the life cycle and its protein localized in cytoplasm in Arabidopsis protoplasm, we proposed that GmGAL1 may be a multifunctional gene in the context of the soybean development. Ectopic expression of GmGAL1 in Arabidopsis enhanced flowering under long-day condition and partially rescued soc1 late flowering type.  相似文献   

7.
Bethke PC  Gubler F  Jacobsen JV  Jones RL 《Planta》2004,219(5):847-855
Seeds of Arabidopsis thaliana (L.) Heynh. and grains of barley (Hordeum vulgare L.) were used to characterize the affects of nitric oxide (NO) on seed dormancy. Seeds of the C24 and Col-1 ecotypes of Arabidopsis are almost completely dormant when freshly harvested, but dormancy was broken by stratification for 3 days at 4°C or by imbibition of seeds with the NO donor sodium nitroprusside (SNP). This effect of SNP on dormancy of Arabidopsis seeds was concentration dependent. SNP concentrations as low as 25 M reduced dormancy and stimulated germination, but SNP at 250 M or more impaired seedling development, including root growth, and inhibited germination. Dormancy was also reduced when Arabidopsis seeds were exposed to gasses that are generated by solutions of SNP. Nitrate and nitrite, two other oxides of nitrogen, reduced the dormancy of Arabidopsis seeds, but much higher concentrations of these were required compared to SNP. Furthermore, the kinetics of germination were slower for seeds imbibed with either nitrate or nitrite than for seeds imbibed with SNP. Although seeds imbibed with SNP had reduced dormancy, seeds imbibed with SNP and abscisic acid (ABA) remained strongly dormant. This may indicate that the effects of ABA action on germination are downstream of NO action. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide (cPTIO) strengthened dormancy of unstratified and briefly stratified Arabidopsis seeds. Dormancy of three cultivars of barley was also reduced by SNP. Furthermore, dormancy in barley grain was strengthened by imbibition of grain with cPTIO. The data presented here support the conclusion that NO is a potent dormancy breaking agent for seeds and grains. Experiments with the NO scavenger suggest that NO is an endogenous regulator of seed dormancy.Abbreviations ABA Abscisic acid - cPTIO 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide - GA Gibberellin - SNP Sodium nitroprusside - NOx Gaseous oxides of nitrogen  相似文献   

8.
To ensure that the initiation of flowering occurs at the correct time of year, plants need to integrate a diverse range of external and internal signals. In Arabidopsis, the photoperiodic flowering pathway is controlled by a set of regulators that include CONSTANS (CO). In addition, Arabidopsis plants also have a family of genes with homologies to CO known as CO-LIKE (COL) about which relatively little is known. In this paper, we describe the regulation and interactions of a novel member of the family, COL5. The expression of COL5 is under circadian and diurnal regulation, but COL5 itself does not appear to affect circadian rhythms. COL5, like CO, is regulated by GIGANTEA. Furthermore, COL5 is expressed in the vascular tissue. Using COL5 over-expressing lines we show that, under short days, constitutive expression of COL5 affects flowering time and the expression of the floral integrator genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO 1. Constitutive expression of COL5 partially suppresses the late flowering phenotype of the co-mutant plants. However, plants with loss of COL5 function do not show altered flowering. Taken together, our results suggest that COL5 has COL activity, but may either not have a role in regulating flowering in wild-type plants or may act redundantly with other flowering regulators. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.
The <Emphasis Type="Italic">FT/TFL1</Emphasis> gene family in grapevine   总被引:6,自引:0,他引:6  
The FT/TFL1 gene family encodes proteins with similarity to phosphatidylethanolamine binding proteins which function as flowering promoters and repressors. We show here that the FT/TFL1 gene family in Vitis vinifera is composed of at least five genes. Sequence comparisons with homologous genes identified in other dicot species group them in three major clades, the FT, MFT and TFL1 subfamilies, the latter including three of the Vitis sequences. Gene expression patterns are in agreement with a role of VvFT and VvMFT as flowering promoters; while VvTFL1A, VvTFL1B and VvTFL1C could be associated with vegetative development and maintenance of meristem indetermination. Overexpression of VvFT in transgenic Arabidopsis plants generates early flowering phenotypes similar to those produced by FT supporting a role for this gene in flowering promotion. Overexpression of VvTFL1A does not affect flowering time but the determination of flower meristems, strongly altering inflorescence structure, which is consistent with the biological roles assigned to similar genes in other species.  相似文献   

12.
An earliness per se gene, designated Eps-Am1, was mapped in diploid wheat in F2 and single-seed descent mapping populations from the cross between cultivated (DV92) and wild (G3116) Triticum monococcum accessions. A QTL with a peak on RFLP loci Xcdo393 and Xwg241, the most distal markers on the long arm of chromosome 1Am, explained 47% of the variation in heading date (LOD score 8.3). Progeny tests for the two F2:3 families with critical recombination events between Xcdo393 and Xwg241 showed that the gene was distal to Xcdo393 and linked to Xwg241. Progeny tests and replicated experiments with line #3 suggested that Eps-Am1 was distal to Xwg241. This gene showed a large effect on heading date in the controlled environment experiments, and a smaller, but significant, effect under natural conditions. Eps-Am1 showed significant epistatic interactions with photoperiod and vernalization treatments, suggesting that the different classes of genes affecting heading date interact as part of a complex network that controls the timing of flowering induction. Besides its interactions with other genes affecting heading date, Eps-Am1 showed a significant interaction with temperature. The effect of temperature was larger in plants carrying the DV92 allele for late flowering than in those carrying the G3116 allele for early flowering. Average differences in heading date between the experiments performed at 16 °C and 23 °C were approximately 11 days (P < 0.001) for the lines carrying the Eps-Am1 allele for early flowering but approximately 50 days (P < 0.0001) for the lines carrying the allele for late flowering. The large differences in heading time (average 80 days) observed between plants carrying the G3116 and DV92 alleles when grown at 16 °C, suggest that it would be possible to produce very detailed maps for this gene to facilitate its future positional cloning.  相似文献   

13.
14.
Biotransformation of flavonoids using Escherichia coli harboring nucleotide sugar-dependent uridine diphosphate-dependent glycosyltransferases (UGTs) commonly results in the production of a glucose conjugate because most UGTs are specific for UDP-glucose. The Arabidopsis enzyme AtUGT78D2 prefers UDP-glucose as a sugar donor and quercetin as a sugar acceptor. However, in vitro, AtUGT78D2 could use UDP-N-acetylglucosamine as a sugar donor, and whole cell biotransformation of quercetin using E. coli harboring AtUGT78D2 produced quercetin 3-O-N-acetylglucosamine. In order to increase the production of quercetin 3-O-N-acetylglucosamine via biotransformation, two E. coli mutant strains deleted in phosphoglucomutase (pgm) or glucose-1-phosphate uridylyltransferase (galU) were created. The galU mutant produced up to threefold more quercetin 3-O-N-acetylglucosamine than wild type, resulting in the production of 380-mg/l quercetin 3-O-N-acetylglucosamine and a negligible amount of quercetin 3-O-glucoside. These results show that construction of bacterial strains for the synthesis of unnatural flavonoid glycosides is possible through rational selection of the nucleotide sugar-dependent glycosyltransferase and engineering of the nucleotide sugar metabolic pathway in the host strain.  相似文献   

15.
To get insight into mechanism by which apple tree (Malus domestica Borkh.) regulates flowering, two apple flowering locus T (FT) homologues, MdFT1 and MdFT2, were isolated from the leaf cDNAs of cultivar Gala. The open reading frames (ORFs) of two MdFTs encoded 174 amino acids. The deduced amino acid sequence of MdFT1 and MdFT2 showed 94.3 % similarity to each other, while 72.6 and 76.0 % to AtFT protein, respectively. Semi-quantitative RT-PCR indicated their specific expression in leaves. Visualization of MdFT2-GFP fusion protein demonstrated its localization on membrane. Ectopic overexpression of either MdFT1 or MdFT2 in Arabidopsis significantly induced early flowering by activating the downstream flowering-related genes.  相似文献   

16.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

17.
Using a direct amplification of genomic DNA from two Brassica rapa forms, we obtained two homologs of the CONSTANS gene, which controls the photoperiodic induction of flowering in Arabidopsis plants. The cloned fragments of B. rapa genome were identified as members of the CONSTANS-LIKE1 class. By aligning the nucleotide sequences of the CONSTANS gene and its homologs, three classes, CONSTANS, CONSTANS-LIKE1, and CONSTANS-LIKE2, were distinctly discerned by their primary structure. The pattern of restriction fragment length polymorphisms (RFLP) of the CONSTANS homologs in B. carinata, B. juncea, B. napus, B. nigra, B. oleracea, and B. rapa were genome-specific; in addition, the CONSTANS homologs were classified by plant geographic origin, and we assume that such classification is related to plant photoperiodic response.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 274–281.Original Russian Text Copyright © 2005 by Martynov, Khavkin.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

18.
Flowering timing is very important for the reproductive success of higher plants. However, effects of salt on plant flowering and the underlying molecular mechanisms are largely unknown. Here, we show that salt stress delays flowering in Arabidopsis in a dose-dependent manner. Mild salt stress (≤50 mM NaCl) promoted and prolonged the vegetative growth, whereas high salinity (≥100 mM NaCl) largely delayed or inhibited the transition from vegetative growth to reproductive development. The gibberellin (GA)-pathway plays an important role in this phenotype, and application of exogenous GA could restore late flowering induced by salt. In addition, the CONSTANS (CO)/FLOWERING LOCUS T (FT) module may also play a critical role in mediating the effects of salt on flowering. The mRNA abundance of CO was significantly reduced by salt stress in a dose-dependent manner. The constans (co-2) mutants did not respond to moderate salt stress, whereas over-expressing CO manifested no delay in flowering time in response to salinity. Expression of FT, SOC1 and LFY in the downstream of the pathways was also reduced by salt according to dose. Moreover, salt-sensitive mutant salt overly sensitive3 (sos3) exhibited greater sensitivity in flowering, further suggesting that ion disequilibrium mediates salt-induced late flowering. Kexue Li and Youning Wang contributed equally to this report.  相似文献   

19.
A moderate change in ambient temperature significantly affects plant physiology including flowering time. MiR399 and its target gene PHOSPHATE 2 (PHO2) are known to play a role in the maintenance of phosphate homeostasis. However, the regulation of flowering time by the miR399-PHO2 module has not been investigated. As we have previously identified miR399 as an ambient temperature-responsive miRNA, we further investigated whether a change in expression of the miR399-PHO2 module affects flowering time in response to ambient temperature changes. Here, we showed that miR399b-overexpressing plants and a loss-of-function allele of PHO2 (pho2) exhibited an early flowering phenotype only at normal temperature (23°C). Interestingly, their flowering time at lower temperature (16°C) was similar to that of wild-type plants, suggesting that alteration in flowering time by miR399 and its target PHO2 was seen only at normal temperature (23°C). Flowering time ratio (16°C/23°C) revealed that miR399b-overexpressing plants and pho2 mutants showed increased sensitivity to ambient temperature changes. Expression analysis indicated that expression of TWIN SISTER OF FT (TSF) was increased in miR399b-overexpressing plants and pho2 mutants at 23°C, suggesting that their early flowering phenotype is associated with TSF upregulation. Taken together, our results suggest that miR399, an ambient temperature-responsive miRNA, plays a role in ambient temperature-responsive flowering in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号