首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Narumiya S 《Life sciences》2003,74(2-3):391-395
Prostanoids including prostaglandins (PGs) and thromboxanes (TX) are a group of lipid mediators formed and released in response to various, often noxious, stimuli. While the roles of prostanoids in acute inflammatory responses are well known and have been extensively studied, it is generally believed that they play very little in immunity. This is partly because non-steroidal anti-inflammatory drugs that inhibit prostanoid synthesis have little effects on immune processes in vivo. Prostanoids exert their actions by acting on a family of G-protein-coupled receptors. They include PGD receptor, EP1, EP2, EP3 and EP4 subtypes of PGE receptor, PGF receptor, PGI receptor and TX receptor. We generated mice deficient in each of these prostanoid receptors individually, and examined their roles under various pathological conditions. These studies have revealed that prostanoids works at various sites or levels of immune responses and exert many, often opposing, actions. For example, using EP4-deficient mice, we found that stimulation of the PGE(2)-EP4 signaling in dendritic cells facilitates their migration and maturation, while the stimulation of the same pathway in T cells potently suppresses their activation and proliferation. The latter action is evident in PGE(2)-mediated suppression of T cell proliferation in the gut of mice subjected to dextran sodium sulfate-induced colitis, a model of inflammatory bowel disease. Here I summarize our findings obtained by these and other studies. These findings suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of certain immunological disorders.  相似文献   

2.
3.
The expression of cyclooxygenase-2 (COX-2) and the synthesis of prostaglandin E2 (PGE2) as well as of cytokines such as interleukin-6 (IL-6) have all been suggested to propagate neuropathology in different brain disorders such as HIV-dementia, prion diseases, stroke and Alzheimer's disease. In this report, we show that PGE2-stimulated IL-6 release in U373 MG human astroglioma cells and primary rat astrocytes. PGE2-induced intracellular cAMP formation was mediated via prostaglandin E receptor 2 (EP2), but inhibition of cAMP formation and protein kinase A or blockade of EP1/EP2 receptors did not affect PGE2-induced IL-6 synthesis. This indicates that the cAMP pathway is not part of PGE2-induced signal transduction cascade leading to IL-6 release. The EP3/EP1-receptor agonist sulprostone failed to induce IL-6 release, suggesting an involvement of EP4-like receptors. PGE2-activated p38 mitogen-activated kinase (p38 MAPK) and protein kinase C (PKC). PGE2-induced IL-6 synthesis was inhibited by specific inhibitors of p38 MAPK (SB202190) and PKC (GF203190X). Although, up to now, EP receptors have only rarely been linked to p38 MAPK or PKC activation, these results suggest that PGE2 induces IL-6 via an EP4-like receptor by the activation of PKC and p38 MAPK via an EP4-like receptor independently of cAMP.  相似文献   

4.
Previously, we demonstrated that prostaglandin E(2) (PGE(2)) induced cAMP and cyst formation through PGE(2) receptor-2 (EP2) activity in human autosomal-dominant polycystic kidney disease (ADPKD) epithelial cells. In this study, we determined the role of EP2 and EP4 receptors in mediating PGE(2) stimulation of cAMP signaling and cystogenesis in mouse renal epithelial cells using the inner medullary collecting duct-3 (IMCD-3) cell line. In contrast to human ADPKD cells, using novel EP2 and EP4 antagonists, we found that IMCD-3 cells expressed functional EP4 but not EP2, which stimulated cAMP formation and led to cyst formation in 3D culture system. The involvement of EP4 receptors in IMCD-3 cells was further supported by the specific effect of EP4 siRNA that inhibited PGE(2)-induced cystogenesis. We also observed different cellular localization of EP2 or EP4 receptors in IMCD-3 transfected cells. Collectively, our results suggest an important role of different expression of EP2 or EP4 receptors in the regulation of cystogenesis.  相似文献   

5.
A major immunological response during neuroinflammation is the activation of microglia, which subsequently release proinflammatory mediators such as prostaglandin E(2) (PGE(2)). Besides its proinflammatory properties, cyclooxygenase-2 (COX-2)-derived PGE(2) has been shown to exhibit anti-inflammatory effects on innate immune responses. Here, we investigated the role of microsomal PGE(2) synthase-1 (mPGES-1), which is functionally coupled to COX-2, in immune responses using a model of lipopolysaccharide (LPS)-induced spinal neuroinflammation. Interestingly, we found that activation of E-prostanoid (EP)2 and EP4 receptors, but not EP1, EP3, PGI(2) receptor (IP), thromboxane A(2) receptor (TP), PGD(2) receptor (DP), and PGF(2) receptor (FP), efficiently blocked LPS-induced tumor necrosis factor α (TNFα) synthesis and COX-2 and mPGES-1 induction as well as prostaglandin synthesis in spinal cultures. In vivo, spinal EP2 receptors were up-regulated in microglia in response to intrathecally injected LPS. Accordingly, LPS priming reduced spinal synthesis of TNFα, interleukin 1β (IL-1β), and prostaglandins in response to a second intrathecal LPS injection. Importantly, this reduction was only seen in wild-type but not in mPGES-1-deficient mice. Furthermore, intrathecal application of EP2 and EP4 agonists as well as genetic deletion of EP2 significantly reduced spinal TNFα and IL-1β synthesis in mPGES-1 knock-out mice after LPS priming. These data suggest that initial inflammation prepares the spinal cord for a negative feedback regulation by mPGES-1-derived PGE(2) followed by EP2 activation, which limits the synthesis of inflammatory mediators during chronic inflammation. Thus, our data suggest a role of mPGES-1-derived PGE(2) in resolution of neuroinflammation.  相似文献   

6.
Both interleukin-1beta (IL-1beta) and prostaglandins (PGs) are important mediators of physiological and pathophysiological processes in the brain. PGE2 exerts its effects by binding to four different types of PGE2 receptors named EP1-EP4. EP3 has found to be expressed in neurons, whereas expression of EP3 in glial cells has not been reported in the brain yet. Here we describe IL-1beta-induced EP3 receptor expression in human astrocytoma cells, primary astrocytes of rat and human origin and in rat brain. Using western blot, we found a marked up-regulation of EP3 receptor synthesis in human and rat primary glial cells. Intracerebroventricular administration of IL-1beta stimulated EP3 receptor synthesis in rat hippocampus. The analysis of involved signal transduction pathways by pathway-specific inhibitors revealed an essential role of protein kinase C and nuclear factor-kappaB in astrocytic IL-1beta-induced EP3 synthesis. Our data suggest that PGE2 signaling in the brain may be altered after IL-1beta release due to up-regulation of EP3 receptors. This might play an important role in acute and chronic conditions such as cerebral ischemia, traumatic brain injury, HIV-encephalitis, Alzheimer's disease and prion diseases in which a marked up-regulation of IL-1beta is followed by a prolonged increase of PGE2 levels in the brain.  相似文献   

7.
Antigen-specific immune responses in the skin are initiated by antigen uptake into Langerhans cells and the subsequent migration of these cells to draining lymph nodes. Although prostaglandin E2 (PGE2) is produced substantially in skin exposed to antigen, its role remains unclear. Here we show that although Langerhans cells express all four PGE receptor subtypes, their migration to regional lymph nodes was decreased only in EP4-deficient (Ptger4-/-) mice and in wild-type mice treated with an EP4 antagonist. An EP4 agonist promoted the migration of Langerhans cells, increased their expression of costimulatory molecules and enhanced their ability to stimulate T cells in the mixed lymphocyte reaction in vitro. Contact hypersensitivity to antigen was impaired in Ptger4-/- mice and in wild-type mice treated with the EP4 antagonist during sensitization. PGE2-EP4 signaling thus facilitates initiation of skin immune responses by promoting the migration and maturation of Langerhans cells.  相似文献   

8.
The process of oocyte maturation, which impacts ovulation and fertilization, is complex and requires an integration of the endocrine, paracrine, juxtacrine, and autocrine signaling pathways. This process involves an intimate interaction between the oocyte and encircling cumulus cells within a follicle, a unique venue for somatic and germ cell communication. Cumulus cell expansion and resumption of meiosis with germinal vesicle breakdown are major events in oocyte maturation. Cyclooxygenase-2 (COX-2)-derived prostaglandin E(2) (PGE(2)) is a known critical mediator of oocyte maturation, but the diverse function of this lipid mediator in oocyte maturation, ovulation, and fertilization has not been fully appreciated. We show here that gonadotropins in coordination with PGE(2) signaling via its cell surface G-protein-coupled EP2 and EP4 receptor subtypes direct cumulus cell expansion and survival and oocyte meiotic maturation by differentially impacting cAMP-dependent protein kinase, MAPK, NF-kappaB, and phosphatidylinositol 3-kinase/Akt pathways. This study is unique in the sense that it provides evidence for new site- and event-specific involvement of these signaling pathways under the influence of COX-2-derived PGE(2) during the critical stages of this somatic-germ cell interaction, an absolute requirement for oocyte maturation.  相似文献   

9.
Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE2 receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE2 synthesis was determined by mass spectrometry, cell proliferation by DNA [3H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE2 into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE2-dependent proliferation. Exogenously added PGE2 stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10-8 M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE2 was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE2 release, which stimulates cell proliferation via the EP1 receptor.  相似文献   

10.
It has been documented that arginine vasopressin (AVP) and prostaglandin E(2) (PGE(2)) regulate water reabsorption in renal tubular cells. The present study was attempted to delineate the downstream signaling of AVP and PGE(2) in a cortical collecting duct cell line (M-1 cell). Using RT-PCR, we detected mRNA for V2 and VACM-1 but not for V1a and AII/AVP receptors of AVP. Furthermore, neither AVP nor V2 receptor agonist and antagonist alter cellular cAMP. These together with unchanged cellular Ca(2+) by AVP suggested that AVP pathway was not operating in M-1 cells. All four classical PGE(2) receptors with EP3 and EP4 as the most prominent were detected in M-1 cells. PGE(2), 11-deoxy-PGE(1) (EP2 and EP4 agonist), and 17-phenyl-trinor-PGE(2) (EP1 agonist) increased cellular concentration of cAMP. There was no effect of PGE(2) or EP1 agonist on cellular Ca(2+). These findings provide evidence of the involvement of PGE(2) cascade in M-1 cells. M-1 cells were capable of synthesizing nitric oxide (NO). Although individual cytokines did not affect NO production, a mixture of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma elevated NO concentration to 4.5-fold of the control. Addition of PGE(2) and db-cAMP to the cytokine mixture further increased NO production to 7.0- and 9.8-fold, respectively, of that seen in non-treated cells. PGE(2) or db-cAMP alone, however, had no effect on NO production. The results of the study led us to speculate that enhanced production of cAMP via PGE(2) signaling pathway in M-1 cells could either stimulate or attenuate water reabsorption in renal tubule. While an increase in cAMP alone may enhance water reabsorption, a concomitant increase in cAMP and cytokines may inhibit water reabsorption in renal tubule.  相似文献   

11.
12.
Tumor cyclooxygenase-2 (COX-2) expression is known to be associated with enhanced tumor invasiveness. In the present study, we evaluated the importance of the COX-2 product prostaglandin E2 (PGE2) and its signaling through the EP4 receptor in mediating non-small cell lung cancer (NSCLC) invasiveness. Genetic inhibition of tumor COX-2 led to diminished matrix metalloproteinase (MMP)-2, CD44, and EP4 receptor expression and invasion. Treatment of NSCLC cells with exogenous 16,16-dimethylprostaglandin E2 significantly increased EP4 receptor, CD44, and MMP-2 expression and matrigel invasion. In contrast, anti-PGE2 decreased EP4 receptor, CD44, and MMP-2 expression in NSCLC cells. EP4 receptor signaling was found to be central to this process, because antisense oligonucleotide-mediated inhibition of tumor cell EP4 receptors significantly decreased CD44 expression. In addition, agents that increased intracellular cAMP, as is typical of EP4 receptor signaling, markedly increased CD44 expression. Moreover, MMP-2-AS treatment decreased PGE2-mediated CD44 expression, and CD44-AS treatment decreased MMP-2 expression. Thus, PGE2-mediated effects through EP4 required the parallel induction of both CD44 and MMP-2 expression because genetic inhibition of either MMP-2 or CD44 expression effectively blocked PGE2-mediated invasion in NSCLC. These findings indicate that PGE2 regulates COX-2-dependent, CD44- and MMP-2-mediated invasion in NSCLC in an autocrine/paracrine manner via EP receptor signaling. Thus, blocking PGE2 production or activity by genetic or pharmacological interventions may prove to be beneficial in chemoprevention or treatment of NSCLC.  相似文献   

13.
Prostaglandins (PGs) play a pivotal role in the initiation and progression of term and preterm labor. Uterine activity is stimulated primarily by PGE(2) and PGF(2alpha) acting on prostaglandin E (EP) and prostaglandin F (FP) receptors, respectively. Activation of FP receptors strongly stimulates the myometrium, whereas stimulation of EP receptors may lead to contraction or relaxation, depending on the EP subtype (EP1-4) expression. Thus, the relative expression of FP and EP1-4 may determine the responsiveness to PGE(2) and PGF(2alpha). The aims of this study were to characterize the expression of EP1-4 and FP in intrauterine tissues and placentome, together with myometrial responsiveness to PG, following the onset of dexamethasone-induced preterm and spontaneous term labor. Receptor mRNA expression was measured using quantitative real-time polymerase chain reaction using species-specific primers. There was no increase in myometrial contractile receptor expression at labor onset, nor was there a change in sensitivity to PGE(2) and PGF(2alpha). This suggests expression of these receptors reaches maximal levels by late gestation in sheep. Placental tissue showed a marked increase in EP2 and EP3 receptor expression, the functions of which are unknown at this time. Consistent with previous reports, these results suggest that PG synthesis is the main factor in the regulation of uterine contractility at labor. This is the first study to simultaneously report PG E and F receptor expression in the key gestational tissues of the sheep using species-specific primers at induced-preterm and spontaneous labor onset.  相似文献   

14.
15.
Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR). Conversely, neither 5'-( N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE 2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE 2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE 2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the beta-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to G s-coupled receptors in ASM, GRK2/3 selectively attenuates beta 2AR signaling, yet relief of GRK2/3-dependent beta 2AR desensitization does not influence at least one important physiological function of the receptor.  相似文献   

16.
COX-2-dependent prostaglandin (PG) E2 synthesis regulates macrophage MMP expression, which is thought to destabilize atherosclerotic plaques. However, the administration of selective COX-2 inhibitors paradoxically increases the frequency of adverse cardiovascular events potentially through the loss of anti-inflammatory prostanoids and/or disturbance in the balance of pro- and anti-thrombotic prostanoids. To avoid these collateral effects of COX-2 inhibition, a strategy to identify and block specific prostanoid-receptor interactions may be required. We previously reported that macrophage engagement of vascular extracellular matrix (ECM) triggers proteinase expression through a MAPKerk1/2-dependent increase in COX-2 expression and PGE2 synthesis. Here we demonstrate that elicited macrophages express the PGE2 receptors EP1-4. When plated on ECM, their expression of EP2 and EP4, receptors linked to PGE2-induced activation of adenylyl cyclase, is strongly stimulated. Forskolin and dibutryl cyclic-AMP stimulate macrophage matrix metalloproteinase (MMP)-9 expression in a dose-dependent manner. However, an EP2 agonist (butaprost) has no effect on MMP-9 expression, and macrophages from EP2 null mice exhibited enhanced COX-2 and MMP-9 expression when plated on ECM. In contrast, the EP4 agonist (PGE1-OH) stimulated macrophage MMP-9 expression, which was inhibited by the EP4 antagonist ONO-AE3-208. When compared with COX-2 silencing by small interfering RNA or inhibition by celecoxib, the EP4 antagonist was as effective in inhibiting ECM-induced proteinase expression. In addition, ECM-induced MMP-9 expression was blocked in macrophages in which EP4 was silenced by small interfering RNA. Thus, COX-2-dependent ECM-induced proteinase expression is effectively blocked by selective inhibition of EP4, a member of the PGE2 family of receptors.  相似文献   

17.
Our understanding of the key players involved in the differential regulation of T-cell responses during inflammation, infection and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. With respect to this, the inhibitory role of the lipid mediator prostaglandin E(2) (PGE(2)) in T-cell immunity has been documented since the 1970s. Studies that ensued investigating the underlying mechanisms substantiated the suppressive function of micromolar concentrations of PGE(2) in T-cell activation, proliferation, differentiation and migration. However, the past decade has seen a revolution in this perspective, since nanomolar concentrations of PGE(2) have been shown to potentiate Th1 and Th17 responses and aid in T-cell proliferation. The understanding of concentration-specific effects of PGE(2) in other cell types, the development of mice deficient in each subtype of the PGE(2) receptors (EP receptors) and the delineation of signalling pathways mediated by the EP receptors have enhanced our understanding of PGE(2) as an immune-stimulator. PGE(2) regulates a multitude of functions in T-cell activation and differentiation and these effects vary depending on the micro-environment of the cell, maturation and activation state of the cell, type of EP receptor involved, local concentration of PGE(2) and whether it is a homeostatic or inflammatory scenario. In this review, we compartmentalize the various aspects of this complex relationship of PGE(2) with T lymphocytes. Given the importance of this molecule in T-cell activation, we also address the possibility of using EP receptor antagonism as a potential therapeutic approach for some immune disorders.  相似文献   

18.
19.
There is evidence that the overall effects of prostaglandin E(2) (PGE(2)) on human platelet function are the consequence of a balance between promotory effects of PGE(2) acting at the EP3 receptor and inhibitory effects acting at the EP4 receptor, with no role for the IP receptor. Another prostaglandin that has been reported to affect platelet function is prostaglandin E(1) (PGE(1)), however the receptors that mediate its actions on platelet function have not been fully defined. Here we have used measurements of platelet aggregation and P-selectin expression induced by the thromboxane A(2) mimetic U46619 to compare the effects of PGE(1) and PGE(2) on platelet function. Their effects on vasodilator-stimulated phosphoprotein (VASP) phosphorylation, as a marker of cAMP, were also determined. We also investigated the ability of the selective prostanoid receptor antagonists CAY10441 (IP antagonist), DG-041 (EP3 antagonist) and ONO-AE3-208 (EP4 antagonist) to modify the effects of the prostaglandins on platelet function. The results obtained confirm that PGE(2) interacts with EP3 and EP4 receptors, but not IP receptors. In contrast PGE(1) interacts with EP3 and IP receptors, but not EP4 receptors. In both cases the overall effects on platelet function reflect the balance between promotory and inhibitory effects at receptors that have opposite effects on adenylate cyclase.  相似文献   

20.
Inflammatory mediators, including prostaglandins, cytokines, and chemokines, are strongly implicated in the mechanism of human labor, though their precise roles remain unknown. Here we demonstrate that interleukin 1 beta (IL-1beta) significantly increased the expression and release of interleukin-8 (CXCL8), monocyte chemotactic protein-1 (CCL2), and granulocyte macrophage colony-stimulating factor (CSF2) by primary human myometrial cells. However, this effect was repressed by prostaglandin E(2) (PGE(2)). As PGE(2) can activate four distinct PGE(2) receptors (EP(1), EP(2), EP(3), and EP(4)) to elicit various responses, we sought to define the EP receptor(s) responsible for this repression. Using selective EP receptor agonists and a selective EP(4) antagonist, we show that PGE(2) mediates the repression of IL-1beta-induced release of CXCL8, CCL2, and CSF2 via activation of the EP(2) and EP(4) receptors. The use of siRNA gene-specific knockdown further confirmed a role for both receptors. Real-time RT-PCR demonstrated that EP(2) was the most highly expressed of all four EP receptors at the mRNA level in human myometrial cells, and immunocytochemistry showed that EP(2) protein is abundantly present throughout the cells. Interestingly, PGE(2) does not appear to reduce mRNA expression of CXCL8, CCL2, and CSF2. Our results demonstrate that PGE(2) can elicit anti-inflammatory responses via activation of the EP(2) and EP(4) receptors in lower segment term pregnant human myometrial cells. Further elucidation of the EP receptor-mediated signaling pathways in the pregnant human uterus may be beneficial for optimizing the maintenance of pregnancy, induction of labor or indeed treatment of preterm labor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号