首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B Bckle  B Galunsky    R Müller 《Applied microbiology》1995,61(10):3705-3710
A serine protease from the keratin-degrading Streptomyces pactum DSM 40530 was purified by casein agarose affinity chromatography. The enzyme had a molecular weight of 30,000 and an isoelectric point of 8.5. The proteinase was optimally active in the pH range from 7 to 10 and at temperatures from 40 to 75 degrees C. The enzyme was specific for arginine and lysine at the P1 site and for phenylalanine and arginine at the P1' site. It showed a high stereoselectivity and secondary specificity with different synthetic substrates. The keratinolytic activity of the purified proteinase was examined by incubation with the insoluble substrates keratin azure, feather meal, and native and autoclaved chicken feather downs. The S. pactum proteinase was significantly more active than the various commercially available proteinases. After incubation with the purified proteinase, a rapid disintegration of whole feathers was observed. But even after several days of incubation with repeated addition of enzymes, less than 10% of the native keratin substrate was solubilized. In the presence of dithiothreitol, degradation was more than 70%.  相似文献   

2.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

3.
Some properties of fibrinolytic enzyme from cultural fluid of Streptomyces thermovulgaris have been studied. The molecule of enzyme has been shown to consist of one polypeptide chain with molecular mass 28000 dalton, pi = 7.45-7.6. The amino acid composition of protein is determined, the protein does not contain cysteine residues. The enzyme is not thermostable, and Ca2+ ion does not exert stabilized influence. In opposition to diisopropylfluorophosphate, phenylmethylsulfonyl fluoride does not inhibit the enzyme activity.  相似文献   

4.
A range of actinomycete species was tested for their ability to grow on particulate and particle-free rapeseed meal-derived media. Streptomycetes grew on both types of medium and produced a number of extracellular enzymes. Highest activities of protease were produced by Streptomyces thermovulgaris and reflected the high available protein content of rapemeal. Enzyme production and growth were analysed in fermentor-grown batch cultures of S. thermovulgaris using the particle-free rapemeal broth termed medium B. Growth was biphasic and the majority of the protease was produced during the second slower phase. Analysis of the protease as azocaseinase activity revealed a high degree of thermostability in the presence of calcium such that approximately 20% of the activity remained after incubation at 70°C for 24 h. Gel filtration suggested that S. thermovulgaris synthesized more than one kind of protease and this was confirmed by using specific peptide substrates and inhibitors which revealed the presence of distinct serine and metallo-type enzymes.  相似文献   

5.
The serine proteinase from B. licheniformis was purified by affinity chromatography on the sorbent obtained by attachment of p-(omega-aminomethyl)-phenylboronic acid via an amino group to CH-Sepharose. The use of this sorbent specific to the serine proteinases active sites resulted in a 35-fold purification of the enzyme with an apparent activity yield of 288%. Such a high activity yield is due to a removal of the enzyme inhibitors. The N-terminal sequence of B. licheniformis extracellular serine proteinase traced for 35 amino acid residues coincides with that of subtilisin Carlberg, a serine proteinase presumed to be secreted by a B. subtilis strain. Since the amino acid composition as well as the functional properties of these two enzymes did not reveal any noticeable differences, it was assumed that both proteinases are very similar, if not identical. This conclusion leads to reconsideration of the existing concept on an extremely fast rate of subtilisin evolution. Three multiple forms of B. licheniformis extracellular serine proteinase were found to differ only in their net charges, presumably as a result of partial deamidation of Asn or Gln residues within their structure.  相似文献   

6.
An extracellular thiol-dependent serine proteinase was isolated from culture medium filtrate of the microscopic fungus Paecilomyces lilacinus with a yield of 33%. The enzyme is inactivated by specific inhibitors of serine proteinases, phenylmethylsulfonyl fluoride, as well as by chloromercuribenzoate and mercury acetate, but is resistant to chelating agents. The proteinase has broad specificity, hydrolyzes proteins and p-nitroanilides of N-acylated tripeptides, exhibiting maximal activity in hydrolysis of substrates containing long hydrophobic and aromatic residues (norleucine, leucine, phenylalanine) as well as arginine at the P1 position. The enzyme has a molecular weight of 33 kD. The enzyme is most active at pH 10.0-11.5; it is thermostable and is characterized by broad optimum temperature range (30-60 degrees C), displaying about 25% of maximal activity at 0 degrees C. The N-terminal sequence of the enzyme (Gly-Ala-Thr-Thr-Gln-Gly-Ala-Thr-Gly/Ile-Xxx-Gly) has no distinct homology with known primary structures of serine proteinases from fungi and bacilli. Based on its physicochemical and enzymatic properties, the serine proteinase from P. lilacinus can be classified as a thiol-dependent subtilisin-like enzyme.  相似文献   

7.
Evidence that establishes the mechanism of the classes of plant proteinase inhibitors (PIs) is evaluated. Of the eight classes of PIs, six are unique to plants. Except for plant serpins, there is evidence that PIs from all other classes form tight binding complexes with their target proteinases, and that they follow the standard mechanism of inhibition.  相似文献   

8.
An extracellular proteinase secreted by the thermophilic bacteria Thermomonospora fusca YX (YX-proteinase) is a serine proteinase as shown by its inactivation by the site specific reagents, phenylmethanesulfonyl fluoride, dansyl fluoride, and carbobenzoxy-L-phenylalanine chloromethyl ketone. This conclusion is further supported by the effect of various proteinase inhibitors on its activity. The activity of the proteinase toward small synthetic ester substrates shows that the enzyme has a primary specificity for the aromatic and hydrophobic amino acids. The amino acid composition and NH2-terminal sequence, as well as its size, suggest that the enzyme is related to the chymotrypsin-like microbial proteinase, alpha-lytic protease from Myxobacter 495 and protease A and B from Streptomyces griseus.  相似文献   

9.
We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.  相似文献   

10.
11.
12.
A serine proteinase having an activity optimum at pH 6.7-8.2 has been isolated from amylorisine P-10x (a mixture of Aspergillus oryzae enzymes) by chromatography on DEAE-Sephadex A-50 and bacitracin Sepharose 4B. The proteinase is fully inactivated by phenylmethylsulfonylfluoride and diisopropylfluorophosphonate, the specific inhibitors of the enzyme, and has a pI at pH 7.5. The molecular mass of serine proteinase is 30000 Da; its amino acid composition appears as: Met2, Asp33, Thr18, Ser29, Glu21, Pro9, Glu32, Ala38, Val24, Ile16, Leu15, Tyr8, Phe8, His8, Lys18, Arg4, Trp6. The N-terminal sequence of the serine proteinase: Gly-Leu-Thr-Thr-Gln-Lys-Ser-Ala-Pro-Trp-Gly-Leu-Gly-Ser-Ile-Ser-Xaa-Lys- Gly-Gln-Gln-Ser-Thr-Asp-Tyr-Ile-Tyr, which coincides practically completely with the corresponding sequence of alkaline proteinase of A. oryzae, ATCC20386, has been determined. Similar to subtilisin, the enzyme catalyzes the condensation of leucine and alanine p-nitroanilides with N-benzyloxycarbonyl-alanyl-alanine and glycyl-alanine methyl esters.  相似文献   

13.
Serine proteinases are involved, besides digestive role, in immune response processes. In addition to the typical serine proteinase domain, proteinases from arthropod haemocytes contain so-called clip domains which are believed to exert regulatory functions. Clones coding for clip domain-containing serine proteinases were isolated from both Penaeus vannamei and Penaeus monodon haemocyte cDNA libraries. These proteins have most of the structural characteristics of serine proteinase domain, but in the clip domain there are only four cysteines, whereas in most other clip domains there are six. Such structures are named pseudo-clip domains and apparently seem to be widely distributed in Penaeid shrimp. These proteinases were only expressed in haemocytes and not in muscles, hypodermis, heart, tail stalk, pleopods or hepatopancreas.  相似文献   

14.
An affinity protocol was developed for the preparation of the main serine proteinase from Deinagkistrodon acutus venom on industrial scales. As affinity ligand, l-arginine was composed to medium and its structure was confirmed by ESI-MS analysis. The purification process consisted of one major affinity chromatography step to remove more than 95% of other proteins, and a polishing step of DEAE ion-exchange chromatography for removal of minor contaminants. The serine proteinase was 100% pure analyzed on HPLC Vydac C4 column, 99.4% on TSK G3000SW column, and 97.7% with SDS-PAGE analysis. The yield of the main serine proteinase was 3.6% of crude venom protein, the recoveries of typical fibrinogen (Fg) clotting activity and arginine esterase activity of serine proteinase were 82.2% and 84%, higher than those of other reported traditional protocols, the proteinase also showed arginine amidase activity. Reducing SDS-PAGE analysis showed that the arginine esterase was a single polypeptide with the mass of approximately 40 kDa, while MALDI-TOF-TOF-MS analysis showed that the purified proteinase should be a approximately 34 kDa glycoprotein. The desorption constant Kd and the theoretical maximum absorption Qmax on the affinity medium were 9.93 x 10(-5) and 38.1mg/g medium in absorption analysis.  相似文献   

15.
The survey encompasses literature data on the polypeptide inhibitors of some reptiles serine proteinases and their separation from adder Viperidae and cobra Elapidae species. The evolutionary comparison of physico-chemical and biological properties of them are also given and discussed within this work. Considerable homology (about 50%) in amino acid composition of adder, bee, mammal and others of different phylogenetic origin is being emphasized and high homology in structure of their functionally important inhibitors sites is observed. In the most cases the investigated peptide inhibitors of adder and cobra were observed to have an extremely high antitryptic activity with Ki ranging from 7.6 x 10(-10) M to 3.5 x 10(-12) M. The majority of polypeptide inhibitors are suggested by Laskowsky et al to interact with the proteinases in a standard way. The biological reactivity of the above preparations is a result of arginine and lysine presence in the substrate-binding sites of P2' and P3' or P4' centres.  相似文献   

16.
A serine proteinase possessing a fibrinolytic activity was isolated from a culture filtrate of Streptomyces spheroides, strain 35. A consecutive use of affinity chromatography on bacillichin-silochrome and bacitracin-sepharose and ion-exchange chromatography on anionie PAP and cationic KMT resulted in a homogeneous proteinase with 1060-fold purification and 19% yield. The enzyme has a molecular weight of 28000; its amino acid composition is Asp31, Ser28, Thr29, Glu9, Pro14, Gly35, Ala42, Val26, Ile14, Leu13, Met2, Tyr9, Phe4, Trp3, His6, Lys4, Arg10. The enzyme has a pI at pH greater than 10 and the activity optimum against Z-L-Ala-L-Ala-L-Leu-pNA at pH 10-11. The enzyme is stable within the pH range of 4-11 and in 6 M guanidinium chloride pH 8.0 in the presence of Ca2+. The enzyme is inhibited by diisopropylfluorophosphate and benzylsulfofluoride, specific inhibitors of serine proteinases as well as by potato proteinase inhibitor. The serine proteinase SSPB isolated from Str. spheroides, strain 35 can be related to subtilisin-like serine proteinase, especially to those of SGPD and SGPE of Str. griseus.  相似文献   

17.
By Sephadex G-50 gel filtration, Resource Q anionic exchange and C4 reversed phase liquid high performance liquid chromatography, a proteinase inhibitor protein (Ranaserpin) was identified and purified from the eggs of the odour frog, Rana grahami. The protein displayed a single band adjacent to the molecular weight marker of 14.4 kDa analyzed by SDS-PAGE. The inhibitor protein homogeneity and its molecular weight were confirmed again by MALDI-TOF mass spectrometry analysis. The MALDI-TOF mass spectrum analysis gave this inhibitor protein an m/z of 14422.26 that was matched well with the result from SDS-PAGE. This protein is a serine proteinase inhibitor targeting multiple proteinases including trypsin, elastase, and subtilisin. Ranaserpin inhibited the proteolytic activities of trypsin, elastase, and subtilisin. It has an inhibitory constant (K(i)) of 6.2 x 10(-8) M, 2.7 x 10(-7) M and 2.2 x 10(-8) M for trypsin, elastase, and subtilisin, respectively. This serine proteinase inhibitor exhibited bacteriostatic effect on Gram-positive bacteria Bacillus subtilis (ATCC 6633). It was suggested that ranaserpin might act as a defensive role in resistance to invasion of pests or pathogens. This is the first report of serine proteinase inhibitor and its direct defensive role from amphibian eggs.  相似文献   

18.
Two new extracellular serine proteases from Streptomyces fradiae.   总被引:2,自引:0,他引:2  
1. Two new extracellular serine proteases have been purified to homogeneity from Streptomyces fradiae. 2. On amino acid sequencing, striking homology is observed between the first enzyme and Streptomyces griseus Protease A, and the second enzyme and S. griseus trypsin. 3. The sequence information shows for the first time that structurally and enzymatically related serine proteases are extracellularly expressed by different Streptomycetes. 4. Differential keratinolytic substrate specificity among these two microbes are probable due to a difference in disulfide reduction capacity.  相似文献   

19.
The translation initiation site in the extracellular serine subtilisin-like proteinase gene from Bacillus intermedius (aprBi) (AN AY754946) secreting at the stationary growth phase was established. The analysis of aprBi open reading frame revealed three putative translation start sites (TTG, GTG, ATG). Using SignalP online freeware program we have determined the functional activity probability of each of them. To identify the translation start point the modified subtilisin-like protease genes carrying nucleotide replacements in supposed start codons were developed using oligonucleotide-directed mutagenesis. We have investigated the expression of these genetic constructions in protease-deficient strain B. subtilis AJ73. According our results it was concluded that the translation in aprBi gene starts from GTG kodon.  相似文献   

20.
A latent alkaline serine proteinase (ASP) has been extracted from the soluble fraction of lobster claw and abdominal muscles. The enzyme, which was irreversibly activated 30- to 40-fold by brief (2-3 min) heating at 60 degrees C, had an optimal caseinolytic activity at pH 7.75. Its molecular weight was estimated to be 740,000 by gel filtration chromatography. Serine protease inhibitors (diisopropylfluorophosphate, phenylmethanesulfonyl fluoride, soybean trypsin inhibitor, aprotinin, benzamidine, and chloromethyl ketones) suppressed ASP activity 22 to 70%. In addition, sulfhydryl-blocking reagents and hemin inhibited activity 69 to 100%; leupeptin and E-64, however, did not. Pepstatin A, ethylenediaminetetraacetate, and adenosine triphosphate were without effect. These results suggest that the lobster ASP is a serine proteinase that contains one or more sulfhydryl groups essential for catalysis. ASP was stimulated by dithiothreitol and inhibited by CaCl2 and oleic and linoleic acids. The enzyme was partially activated by low concentrations of sodium dodecyl sulfate; 0.05% produced activities 13% of that of preparations heated at 60 degrees C. Neither poly-L-lysine, urea, dimethylsulfoxide, oleic acid, linoleic acid, nor N-ethylmaleimide activated the enzyme. The ASP degraded most myofibrillar proteins, but showed a preferential hydrolysis of paramyosin, troponin-I and -C, and myosin alpha light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号