首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semiparametric analysis of correlated recurrent and terminal events   总被引:2,自引:0,他引:2  
In clinical and observational studies, recurrent event data (e.g., hospitalization) with a terminal event (e.g., death) are often encountered. In many instances, the terminal event is strongly correlated with the recurrent event process. In this article, we propose a semiparametric method to jointly model the recurrent and terminal event processes. The dependence is modeled by a shared gamma frailty that is included in both the recurrent event rate and terminal event hazard function. Marginal models are used to estimate the regression effects on the terminal and recurrent event processes, and a Poisson model is used to estimate the dispersion of the frailty variable. A sandwich estimator is used to achieve additional robustness. An analysis of hospitalization data for patients in the peritoneal dialysis study is presented to illustrate the proposed method.  相似文献   

2.
Recurrent events are common in medical research, yet the best ways to measure their occurrence remain controversial. Moreover, the correct statistical techniques to compare the occurrence of such events across populations or treatment groups are not widely known. In both observational studies and randomised clinical trials one natural and intuitive measure of occurrence is the event rate, defined as the number of events (possibly including multiple events per person) divided by the total person-years of experience. This is often a more relevant and clinically interpretable measure of disease burden in a population than considering only the first event that occurs. Appropriate statistical tests to compare such event rates among treatment groups or populations require the recognition that some individuals may be especially likely to experience recurrent events. Straightforward approaches are available to account for this tendency in crude and stratified analyses. Recently developed regression models can appropriately examine the association of several variables with rates of recurrent events.  相似文献   

3.
Recurrent event data arise in longitudinal follow‐up studies, where each subject may experience the same type of events repeatedly. The work in this article is motivated by the data from a study of repeated peritonitis for patients on peritoneal dialysis. Due to the aspects of medicine and cost, the peritonitis cases were classified into two types: Gram‐positive and non‐Gram‐positive peritonitis. Further, since the death and hemodialysis therapy preclude the occurrence of recurrent events, we face multivariate recurrent event data with a dependent terminal event. We propose a flexible marginal model, which has three characteristics: first, we assume marginal proportional hazard and proportional rates models for terminal event time and recurrent event processes, respectively; second, the inter‐recurrences dependence and the correlation between the multivariate recurrent event processes and terminal event time are modeled through three multiplicative frailties corresponding to the specified marginal models; third, the rate model with frailties for recurrent events is specified only on the time before the terminal event. We propose a two‐stage estimation procedure for estimating unknown parameters. We also establish the consistency of the two‐stage estimator. Simulation studies show that the proposed approach is appropriate for practical use. The methodology is applied to the peritonitis cohort data that motivated this study.  相似文献   

4.
Song R  Kosorok MR  Cai J 《Biometrics》2008,64(3):741-750
Summary .   Recurrent events data are frequently encountered in clinical trials. This article develops robust covariate-adjusted log-rank statistics applied to recurrent events data with arbitrary numbers of events under independent censoring and the corresponding sample size formula. The proposed log-rank tests are robust with respect to different data-generating processes and are adjusted for predictive covariates. It reduces to the Kong and Slud (1997, Biometrika 84, 847–862) setting in the case of a single event. The sample size formula is derived based on the asymptotic normality of the covariate-adjusted log-rank statistics under certain local alternatives and a working model for baseline covariates in the recurrent event data context. When the effect size is small and the baseline covariates do not contain significant information about event times, it reduces to the same form as that of Schoenfeld (1983, Biometrics 39, 499–503) for cases of a single event or independent event times within a subject. We carry out simulations to study the control of type I error and the comparison of powers between several methods in finite samples. The proposed sample size formula is illustrated using data from an rhDNase study.  相似文献   

5.
Recurrent events could be stopped by a terminal event, which commonly occurs in biomedical and clinical studies. In this situation, dependent censoring is encountered because of potential dependence between these two event processes, leading to invalid inference if analyzing recurrent events alone. The joint frailty model is one of the widely used approaches to jointly model these two processes by sharing the same frailty term. One important assumption is that recurrent and terminal event processes are conditionally independent given the subject‐level frailty; however, this could be violated when the dependency may also depend on time‐varying covariates across recurrences. Furthermore, marginal correlation between two event processes based on traditional frailty modeling has no closed form solution for estimation with vague interpretation. In order to fill these gaps, we propose a novel joint frailty‐copula approach to model recurrent events and a terminal event with relaxed assumptions. Metropolis–Hastings within the Gibbs Sampler algorithm is used for parameter estimation. Extensive simulation studies are conducted to evaluate the efficiency, robustness, and predictive performance of our proposal. The simulation results show that compared with the joint frailty model, the bias and mean squared error of the proposal is smaller when the conditional independence assumption is violated. Finally, we apply our method into a real example extracted from the MarketScan database to study the association between recurrent strokes and mortality.  相似文献   

6.
Joint modeling of recurrent events and a terminal event has been studied extensively in the past decade. However, most of the previous works assumed constant regression coefficients. This paper proposes a joint model with time‐varying coefficients in both event components. The proposed model not only accommodates the correlation between the two type of events, but also characterizes the potential time‐varying covariate effects. It is especially useful for evaluating long‐term risk factors' effect that could vary with time. A Gaussian frailty is used to model the correlation between event times. The nonparametric time‐varying coefficients are modeled using cubic splines with penalty terms. A simulation study shows that the proposed estimators perform well. The model is used to analyze the readmission rate and mortality jointly for stroke patients admitted to Veterans Administration (VA) Hospitals.  相似文献   

7.
In studies involving diseases associated with high rates of mortality, trials are frequently conducted to evaluate the effects of therapeutic interventions on recurrent event processes terminated by death. In this setting, cumulative mean functions form a natural basis for inference for questions of a health economic nature, and Ghosh and Lin (2000) recently proposed a relevant class of test statistics. Trials of patients with cancer metastatic to bone, however, involve multiple types of skeletal complications, each of which may be repeatedly experienced by patients over their lifetime. Traditionally the distinction between the various types of events is ignored and univariate analyses are conducted based on a composite recurrent event. However, when the events have different impacts on patients' quality of life, or when they incur different costs, it can be important to gain insight into the relative frequency of the specific types of events and treatment effects thereon. This may be achieved by conducting separate marginal analyses with each analysis focusing on one type of recurrent event. Global inferences regarding treatment benefit can then be achieved by carrying out multiplicity adjusted marginal tests, more formal multiple testing procedures, or by constructing global test statistics. We describe methods for testing for differences in mean functions between treatment groups which accommodate the fact that each particular event process is ultimately terminated by death. The methods are illustrated by application to a motivating study designed to examine the effect of bisphosphonate therapy on the incidence of skeletal complications among patients with breast cancer metastatic to bone. We find that there is a consistent trend towards a reduction in the cumulative mean for all four types of skeletal complications with bisphosphonate therapy; there is a significant reduction in the need for radiation therapy for the treatment of bone. The global test suggests that bisphosphonate therapy significantly reduces the overall number of skeletal complications.  相似文献   

8.
Individuals may experience more than one type of recurrent event and a terminal event during the life course of a disease. Follow‐up may be interrupted for several reasons, including the end of a study, or patients lost to follow‐up, which are noninformative censoring events. Death could also stop the follow‐up, hence, it is considered as a dependent terminal event. We propose a multivariate frailty model that jointly analyzes two types of recurrent events with a dependent terminal event. Two estimation methods are proposed: a semiparametrical approach using penalized likelihood estimation where baseline hazard functions are approximated by M‐splines, and another one with piecewise constant baseline hazard functions. Finally, we derived martingale residuals to check the goodness‐of‐fit. We illustrate our proposals with a real dataset on breast cancer. The main objective was to model the dependency between the two types of recurrent events (locoregional and metastatic) and the terminal event (death) after a breast cancer.  相似文献   

9.
French B  Heagerty PJ 《Biometrics》2009,65(2):415-422
Summary .  Longitudinal studies typically collect information on the timing of key clinical events and on specific characteristics that describe those events. Random variables that measure qualitative or quantitative aspects associated with the occurrence of an event are known as marks. Recurrent marked point process data consist of possibly recurrent events, with the mark (and possibly exposure) measured if and only if an event occurs. Analysis choices depend on which aspect of the data is of primary scientific interest. First, factors that influence the occurrence or timing of the event may be characterized using recurrent event analysis methods. Second, if there is more than one event per subject, then the association between exposure and the mark may be quantified using repeated measures regression methods. We detail assumptions required of any time-dependent exposure process and the event time process to ensure that linear or generalized linear mixed models and generalized estimating equations provide valid estimates. We provide theoretical and empirical evidence that if these conditions are not satisfied, then an independence estimating equation should be used for consistent estimation of association. We conclude with the recommendation that analysts carefully explore both the exposure and event time processes prior to implementing a repeated measures analysis of recurrent marked point process data.  相似文献   

10.
Joint analysis of recurrent and nonrecurrent terminal events has attracted substantial attention in literature. However, there lacks formal methodology for such analysis when the event time data are on discrete scales, even though some modeling and inference strategies have been developed for discrete-time survival analysis. We propose a discrete-time joint modeling approach for the analysis of recurrent and terminal events where the two types of events may be correlated with each other. The proposed joint modeling assumes a shared frailty to account for the dependence among recurrent events and between the recurrent and the terminal terminal events. Also, the joint modeling allows for time-dependent covariates and rich families of transformation models for the recurrent and terminal events. A major advantage of our approach is that it does not assume a distribution for the frailty, nor does it assume a Poisson process for the analysis of the recurrent event. The utility of the proposed analysis is illustrated by simulation studies and two real applications, where the application to the biochemists' rank promotion data jointly analyzes the biochemists' citation numbers and times to rank promotion, and the application to the scleroderma lung study data jointly analyzes the adverse events and off-drug time among patients with the symptomatic scleroderma-related interstitial lung disease.  相似文献   

11.
Shared frailty models for recurrent events and a terminal event   总被引:1,自引:0,他引:1  
Liu L  Wolfe RA  Huang X 《Biometrics》2004,60(3):747-756
There has been an increasing interest in the analysis of recurrent event data (Cook and Lawless, 2002, Statistical Methods in Medical Research 11, 141-166). In many situations, a terminating event such as death can happen during the follow-up period to preclude further occurrence of the recurrent events. Furthermore, the death time may be dependent on the recurrent event history. In this article we consider frailty proportional hazards models for the recurrent and terminal event processes. The dependence is modeled by conditioning on a shared frailty that is included in both hazard functions. Covariate effects can be taken into account in the model as well. Maximum likelihood estimation and inference are carried out through a Monte Carlo EM algorithm with Metropolis-Hastings sampler in the E-step. An analysis of hospitalization and death data for waitlisted dialysis patients is presented to illustrate the proposed methods. Methods to check the validity of the proposed model are also demonstrated. This model avoids the difficulties encountered in alternative approaches which attempt to specify a dependent joint distribution with marginal proportional hazards and yields an estimate of the degree of dependence.  相似文献   

12.
In many medical studies, markers are contingent on recurrent events and the cumulative markers are usually of interest. However, the recurrent event process is often interrupted by a dependent terminal event, such as death. In this article, we propose a joint modeling approach for analyzing marker data with informative recurrent and terminal events. This approach introduces a shared frailty to specify the explicit dependence structure among the markers, the recurrent, and terminal events. Estimation procedures are developed for the model parameters and the degree of dependence, and a prediction of the covariate‐specific cumulative markers is provided. The finite sample performance of the proposed estimators is examined through simulation studies. An application to a medical cost study of chronic heart failure patients from the University of Virginia Health System is illustrated.  相似文献   

13.
Recurrent event data are widely encountered in clinical and observational studies. Most methods for recurrent events treat the outcome as a point process and, as such, neglect any associated event duration. This generally leads to a less informative and potentially biased analysis. We propose a joint model for the recurrent event rate (of incidence) and duration. The two processes are linked through a bivariate normal frailty. For example, when the event is hospitalization, we can treat the time to admission and length-of-stay as two alternating recurrent events. In our method, the regression parameters are estimated through a penalized partial likelihood, and the variance-covariance matrix of the frailty is estimated through a recursive estimating formula. Moreover, we develop a likelihood ratio test to assess the dependence between the incidence and duration processes. Simulation results demonstrate that our method provides accurate parameter estimation, with a relatively fast computation time. We illustrate the methods through an analysis of hospitalizations among end-stage renal disease patients.  相似文献   

14.
Summary In this article, we propose a family of semiparametric transformation models with time‐varying coefficients for recurrent event data in the presence of a terminal event such as death. The new model offers great flexibility in formulating the effects of covariates on the mean functions of the recurrent events among survivors at a given time. For the inference on the proposed models, a class of estimating equations is developed and asymptotic properties of the resulting estimators are established. In addition, a lack‐of‐fit test is provided for assessing the adequacy of the model, and some tests are presented for investigating whether or not covariate effects vary with time. The finite‐sample behavior of the proposed methods is examined through Monte Carlo simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

15.
In many clinical trials, the primary endpoint is time to an event of interest, for example, time to cardiac attack or tumor progression, and the statistical power of these trials is primarily driven by the number of events observed during the trials. In such trials, the number of events observed is impacted not only by the number of subjects enrolled but also by other factors including the event rate and the follow‐up duration. Consequently, it is important for investigators to be able to monitor and predict accurately patient accrual and event times so as to predict the times of interim and final analyses and enable efficient allocation of research resources, which have long been recognized as important aspects of trial design and conduct. The existing methods for prediction of event times all assume that patient accrual follows a Poisson process with a constant Poisson rate over time; however, it is fairly common in real‐life clinical trials that the Poisson rate changes over time. In this paper, we propose a Bayesian joint modeling approach for monitoring and prediction of accrual and event times in clinical trials. We employ a nonhomogeneous Poisson process to model patient accrual and a parametric or nonparametric model for the event and loss to follow‐up processes. Compared to existing methods, our proposed methods are more flexible and robust in that we model accrual and event/loss‐to‐follow‐up times jointly and allow the underlying accrual rates to change over time. We evaluate the performance of the proposed methods through simulation studies and illustrate the methods using data from a real oncology trial.  相似文献   

16.
Summary .  In this article, we consider the setting where the event of interest can occur repeatedly for the same subject (i.e., a recurrent event; e.g., hospitalization) and may be stopped permanently by a terminating event (e.g., death). Among the different ways to model recurrent/terminal event data, the marginal mean (i.e., averaging over the survival distribution) is of primary interest from a public health or health economics perspective. Often, the difference between treatment-specific recurrent event means will not be constant over time, particularly when treatment-specific differences in survival exist. In such cases, it makes more sense to quantify treatment effect based on the cumulative difference in the recurrent event means, as opposed to the instantaneous difference in the rates. We propose a method that compares treatments by separately estimating the survival probabilities and recurrent event rates given survival, then integrating to get the mean number of events. The proposed method combines an additive model for the conditional recurrent event rate and a proportional hazards model for the terminating event hazard. The treatment effects on survival and on recurrent event rate among survivors are estimated in constructing our measure and explain the mechanism generating the difference under study. The example that motivates this research is the repeated occurrence of hospitalization among kidney transplant recipients, where the effect of expanded criteria donor (ECD) compared to non-ECD kidney transplantation on the mean number of hospitalizations is of interest.  相似文献   

17.
In a longitudinal study where the recurrence of an event and a terminal event such as death are observed, a certain portion of the subjects may experience no event during a long follow-up period; this often denoted as the cure group which is assumed to be the risk-free from both recurrent events and death. However, this assumption ignores the possibility of death, which subjects in the cure group may experience. In the present study, such misspecification is investigated with the addition of a death hazard model to the cure group. We propose a joint model using a frailty effect, which reflects the association between a recurrent event and death. For the estimation, an expectation-maximization (EM) algorithm was developed and PROC NLMIXED in SAS was incorporated under a piecewise constant baseline. Simulation studies were performed to check the performance of the suggested method. The proposed method was applied to leukemia patients experiencing both infection and death after bone marrow transplant.  相似文献   

18.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   

19.
Zhao X  Sun J 《Biometrics》2011,67(3):770-779
This article considers nonparametric comparison of several treatment groups based on panel count data, which often occur in, among others, medical follow-up studies and reliability experiments concerning recurrent events. For the problem, most of the existing procedures require that observation processes are identical across different treatment groups among other requirements. We propose a new class of nonparametric test procedures that allow different observation processes. The new test statistics are constructed based on the integrated weighted differences between the estimated mean functions of the underlying recurrent event processes. The asymptotic distributions of the proposed test statistics are established and their finite-sample properties are examined through Monte Carlo simulations, which indicate that the proposed approach works well for practical situations. An illustrative example is provided.  相似文献   

20.
We propose a method for analysis of recurrent event data using information on previous occurrences of the event as a time-dependent covariate. The focus is on understanding how to analyze the effect of such a dynamic covariate while at the same time ensuring that the effects of treatment and other fixed covariates are unbiasedly estimated. By applying an additive regression model for the intensity of the recurrent events, concepts like direct, indirect and total effects of the fixed covariates may be defined in an analogous way as for traditional path analysis. Theoretical considerations as well as simulations are presented, and a data set on recurrent bladder tumors is used to illustrate the methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号