首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,5-Di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ), a potent inhibitor of liver microsomal ATP-dependent Ca2+ sequestration (Moore, G. A., McConkey, D. J., Kass, G. E. N., O'Brien, P. J., and Orrenius, S. (1987) FEBS Lett. 224, 331-336), produced a concentration-dependent, rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) in isolated rat hepatocytes (EC50 = 1-2 microM). The amplitude of the [Ca2+]i increase was essentially identical with that produced by vasopressin, but the tBuBHQ-stimulated [Ca2+]i increase remained sustained for 15-20 min. Vasopressin added 2-3 min after tBuBHQ caused [Ca2+]i to rapidly return to basal levels; however, tBuBHQ added after vasopressin resulted in a Ca2+ transient rather than a sustained [Ca2+]i elevation. Ca2+ influx was not stimulated in tBuBHQ-treated hepatocytes, but was markedly enhanced upon addition of vasopressin. Depletion of the endoplasmic reticular Ca2+ pool by the addition of vasopressin to hepatocytes incubated in low Ca2+ medium virtually abolished the tBuBHQ-mediated [Ca2+]i rise and vice versa. In saponin-permeabilized hepatocytes, tBuBHQ released Ca2+ from the same nonmitochondrial, ATP-dependent Ca2+ pool which was released by inositol 1,4,5-trisphosphate. Furthermore, tBuBHQ-induced Ca2+ release in saponin-permeabilized cells was not inhibited by neomycin, and tBuBHQ did not produce any apparent accumulation of inositol phosphates in intact hepatocytes. The rate of passive efflux of Ca2+ from Ca2+-loaded hepatic microsomes was unaltered by tBuBHQ. Thus, tBuBHQ inhibits ATP-dependent Ca2+ sequestration via a direct effect on the endoplasmic reticulum Ca2+ pump, resulting in net Ca2+ release and elevation of [Ca2+]i. Taken together, our results show that in the absence of hormonal stimuli, excess Ca2+ is only slowly cleared from the hepatocyte cytosol, indicating that the basal rate of Ca2+ removal by the plasma membrane Ca2+ pump and mitochondria is slow. Furthermore, Ca2+-mobilizing hormones appear to stimulate an active process of Ca2+ removal from hepatocyte cytosol which does not depend on re-uptake into the endoplasmic reticulum.  相似文献   

2.
3.
An explanation of the complex effects of hormones on intracellular Ca2+ requires that the intracellular actions of Ins(1,4,5)P3 and the relationships between intracellular Ca2+ stores are fully understood. We have examined the kinetics of 45Ca2+ efflux from pre-loaded intracellular stores after stimulation with Ins(1,4,5)P3 or the stable phosphorothioate analogue, Ins(1,4,5)P3[S]3, by simultaneous addition of one of them with glucose/hexokinase to rapidly deplete the medium of ATP. Under these conditions, a maximal concentration of either Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 evoked rapid efflux of about half of the accumulated 45Ca2+, and thereafter the efflux was the same as occurred under control conditions. Submaximal concentrations of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 caused a smaller rapid initial efflux of 45Ca2+, after which the efflux was similar whatever the concentration of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 present. The failure of submaximal concentrations of Ins(1,4,5)P3 and Ins(1,4,5)P3[S]3 to mobilize fully the Ins(1,4,5)P3-sensitive Ca2+ stores despite prolonged incubation was not due either to inactivation of Ins(1,4,5)P3 or to desensitization of the Ins(1,4,5)P3 receptor. The results suggest that the size of the Ins(1,4,5)P3 sensitive Ca2+ stores depends upon the concentration of Ins(1,4,5)P3.  相似文献   

4.
We characterized the interaction of 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) with the sarcoplasmic reticulum (SR) Ca(2+)-ATPase from rabbit fast-twitch skeletal and canine cardiac muscles by examining the effect of this agent on the ATPase reaction. tBuBHQ at less than 10 microM inhibited ATP hydrolysis by both isoforms of Ca(2+)-ATPase by up to 80 and 90%, respectively. The half maximal inhibition of these enzymes was observed at about 1.5 microM tBuBHQ. Thus, this agent potently inhibits the fast-twitch skeletal and slow-twitch skeletal/cardiac isoforms of SR Ca(2+)-ATPase. tBuBHQ at 5-10 microM inhibited the rate of decomposition of the phosphoenzyme intermediate (EP), measured as a ratio between ATPase activity and the EP level in the steady state, by 35-40%. It also inhibited formation of EP by decreasing the rate of Ca2+ binding to the Ca(2+)-deficient, nonphosphorylated enzyme to about 1/8 of the control value. These results indicate that tBuBHQ has at least two sites of action in the reaction sequence for the SR Ca(2+)-ATPase.  相似文献   

5.
6.
Huh YH  Huh SK  Chu SY  Kweon HS  Yoo SH 《Biochemistry》2006,45(5):1362-1373
The inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are widely localized in both the heterochromatin and euchromatin regions. We found recently the presence of nucleoplasmic complexes that are composed of phospholipids, IP(3)R/Ca(2+) channels, and Ca(2+) storage protein chromogranin B (CGB). Close examination and 3D image reconstruction of these complexes revealed numerous vesicular structures with an average diameter of approximately 50 nm that are primarily interspersed between the heterochromatins. IP(3) rapidly released Ca(2+) from these structures, but other inositol phosphates, inositol 1,4-bisphosphate, inositol 1,3,4-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate, failed to release Ca(2+). Addition of heparin or IP(3)R antibody blocked the IP(3)-induced Ca(2+) releases, indicating the release of Ca(2+) through the IP(3)R/Ca(2+) channels. Given the presence of the IP(3)R/Ca(2+) channels and Ca(2+) storage protein CGB in these vesicular structures, we postulate that these vesicles are the IP(3)-sensitive nucleoplasmic Ca(2+) stores. Abundance of the vesicular Ca(2+) stores between the heterochromatins appeared to imply critical roles these vesicular Ca(2+) stores play in controlling the Ca(2+) concentrations of the chromosomes.  相似文献   

7.
Calcium level in organelles of the slime mold Physarum polycephalum was monitored by chlortetracycline, a low-affinity calcium indicator. It was found that 2,5'-di(tertbutyl)-1,4,-benzohydroquinone (BHQ) at a concentration of 100 microM, but not the highly specific inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), thapsigargin (1-10 microM), elicited calcium release from the CTC-stained intracellular calcium pool. Ionomycin also caused a calcium release (23.7+/-5.1%), which was less than that induced by BHQ (30.1+/-6.0%). Procaine (10 mM), a blocker of ryanodine receptor, completely abolished the responses to BHQ and ionomycin. Another blocker, ryanodine (100 microM), only slightly diminished the responses to ionomycin and BHQ. Apparently, BHQ and ionomycin acting as a Ca2+-ATPase inhibitor and an ionophore, respectively, elicit an increase in [Ca2+]i, which in turn triggers a calcium-induced calcium release (CICR) via the ryanodine receptor. Caffeine, an activator of ryanodine receptor, at a concentration of 25-50 mM produced a Ca2+-release (5.6-16.0%), which was not similar in magnitude to CICR. The response to 25 mM caffeine was only moderately inhibited by 25 mM procaine, and almost completely abolished by 50 mM procaine and 100 microM ryanodine.  相似文献   

8.
Treatment of rat liver microsomes with 2,5-di(tert-butyl)-1,4-benzohydroquinone caused a dose-related inhibition (Ki congruent to 1 microM) of ATP-dependent Ca2+ sequestration. This was paralleled by a similar impairment of the microsomal Ca2+-stimulated ATPase activity. In contrast, the hydroquinose failed to induce Ca2+ release from Ca2+-loaded liver mitochondria (supplied with ATP), and inhibited neither the mitochondrial F1F0-ATPase nor the Ca2+-stimulated ATPase activity of the hepatic plasma membrane fraction. The inhibition of microsomal Ca2+ sequestration was not associated with any apparent alteration of membrane permeability or loss of other microsomal enzyme activities or modification of microsomal protein thiols. These findings suggest that 2,5-di(tert-butyl)-1,4-benzohydroquinone is a potent and selective inhibitor of liver microsomal Ca2+ sequestration which may be a useful tool in studies of Ca2+ fluxes in intact cells and tissues.  相似文献   

9.
Hexamethylene bisacetamide (HMBA) stimulates Ca(2+) signals in murine erythroleukemia (MEL) cells serving as an important component of the HMBA-induced pathway that promotes differentiation to the erythroid phenotype. We observed that 1,6-diaminohexane (DAH) triggered a more rapid and robust increase in MEL cell Ca(2+) levels compared to HMBA and the monodeacetylated N-acetyl-1,6-diaminohexane (NADAH), and that polyamine deacetylase inhibition completely abolished the ability of HMBA and NADAH to induce Ca(2+) signals in MEL cells. Our work indicates that DAH mediates Ca(2+) signal propagation via its ability to activate inositol 1,4,5-trisphosphate (IP(3)) receptors, as we observed similar Ca(2+) release characteristics and heparin sensitivity of DAH and IP(3) in permeabilized MEL cells. Finally, we observed that the DAH-induced Ca(2+) release pathway robustly coupled to a Ca(2+) influx pathway that could be distinguished from thapsigargin-induced Ca(2+) influx by its unusual insensitivity to 2-aminoethoxydiphenyl borate.  相似文献   

10.
2,5-Di(tert-butyl)-1,4-benzohydroquinone has been shown to inhibit the Ca2+,M(2+)-ATPase of sarcoplasmic reticulum with an affinity of 0.4 microM. It has been shown to shift the E2-E1 equilibrium for the ATPase towards E2, as shown previously for the inhibitor thapsigargin. The shift towards E2 results in a decrease in affinity for Ca2+, as also observed for thapsigargin. A marked decrease in the rate of the E2-E1 transition is observed for both BHQ and thapsigargin. A decrease in the equilibrium level of phosphorylation by Pi and of the steady-state level of phosphorylation by ATP are consistent with a decrease in the equilibrium constant for phosphorylation by Pi and an increase in the rate of dephosphorylation.  相似文献   

11.
This study describes the effects of a number of calmodulin antagonists on the cerebellar type 1 inositol 1,4,5-trisphosphate (InsP3) receptor. All the antagonists tested (trifluoperazine, fluphenazine, chlorpromazine and calmidazolium) inhibited the extent of InsP3-induced Ca2+ release (IICR) with similar IC(50) values (between 60 and 85 microM). They did not affect the efficacy of InsP3 to release Ca2+, since the concentrations of InsP3 required to cause half-maximal release was little affected in the presence of these agents. In addition, these agents did not affect InsP3 binding to its receptor. Stopped-flow studies to determine the rate constants of IICR showed this process to be biphasic with a fast and slow component. All the calmodulin antagonists appeared to reduce the rate constants for Ca2+ release in a phase-specific manner, preferentially reducing the fast phase component. Chlorpromazine (75 microM) appeared to have the most potent effect on the fast phase rate constant, reducing it from 1.0 to 0.08 s(-1), while only reducing the rate constant for the slow phase about twofold (0.2-0.08 s(-1)). The fact that calmodulin itself inhibits both IICR and InsP3 binding, while these calmodulin antagonists also reduce Ca2+ release and do not affect InsP3 binding, suggests that the mechanism of action of these agents is unlikely to be due to the reversal of the modulatory action of calmodulin on this receptor.  相似文献   

12.
Summary We have measured Ca2+ uptake and Ca2+ release in isolated permeabilized pancreatic acinar cells and in isolated membrane vesicles of endoplasmic reticulum prepared from these cells. Ca2+ uptake into cells was monitored with a Ca2+ electrode, whereas Ca2+ uptake into membrane vesicles was measured with45Ca2+. Using inhibitors of known action, such as the H+ ATPase inhibitors NBD-Cl and NEM, the Ca2+ ATPase inhibitor vanadate as well as the second messenger inositol 1,4,5-trisphosphate (IP3) and its analog inositol 1,4,5-trisphosphorothioate (IPS3), we could functionally differentiate two non-mitochondrial Ca2+ pools. Ca2+ uptake into the IP3-sensitive Ca2+ pool (IsCaP) occurs by a MgATP-dependent Ca2+ uptake mechanism that exchanges Ca2+ for H+ ions. In the absence of ATP Ca2+ uptake can occur to some extent at the expense of an H+ gradient that is established by a vacuolar-type MgATP-dependent H+ pump present in the same organelle. The other Ca2+ pool takes up Ca2+ by a vanadate-sensitive Ca2+ ATPase and is insensitive to IP3 (IisCaP). The IsCaP is filled at higher Ca2+ concentrations (10–6 mol/liter) which may occur during stimulation. The low steady-state [Ca2+] of 10–7 mol/liter is adjusted by the IisCaP.It is speculated that both Ca2+ pools can communicate with each other, the possible mechanism of which, however, is at present unknown.  相似文献   

13.
14.
The effects of Alzheimer's disease-related amyloidogenic peptides on inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) mobilization were examined in Xenopus laevis oocytes. Intracellular Ca(2+) was monitored by electrophysiological measurement of the endogenous Ca(2+)-activated Cl(-) current. Application of a hyperpolarizing pulse released intracellular Ca(2+) in oocytes primed by pre-injection of a non-metabolizable inositol 1,4,5-trisphosphate analogue. The carboxyl terminus of the amyloid precursor protein inhibited inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca(2+) release in a dose-dependent manner. Equimolar beta-amyloid peptides Abeta(1-40) or Abeta(1-42) had no effect, and whereas a truncated carboxyl terminus lacking the Abeta domain was equipotent to the full-length one, a carboxyl terminus fragment lacking the NPTY sequence was less effective than the full-length fragment. The inhibition induced by the carboxyl terminus was not associated with the block of the Ca(2+)-dependent Cl(-) channel itself or compromised Ca(2+) influx. We conclude that the carboxyl terminus of the amyloid precursor protein inhibits inositol 1,4,5-trisphosphate-sensitive Ca(2+) release and could thus disrupt Ca(2+) homeostasis and that the carboxyl terminus is much more effective than the beta-amyloid fragments used. By perturbing the coupling of inositol 1,4,5-trisphosphate and Ca(2+) release, the carboxyl terminus of the amyloid precursor protein can potentially be involved in inducing the neural toxicity characteristic of Alzheimer's disease.  相似文献   

15.
16.
Continuous superfusion of rat glioma cells with medium containing bradykinin (from 0.2 nM) induced a transient hyperpolarization followed by regular hyperpolarizing oscillations of the membrane potential. Similar repetitive hyperpolarizing oscillations were caused by extracellularly applied bradykinin or muscarine or by intracellularly injected GTP-gamma-S. The frequency of the oscillations was 1 per minute at bradykinin concentrations ranging from 0.2 nM to 2 microM, but the amplitude and duration increased with rising peptide concentration. The muscarine-induced oscillations were blocked by atropine. In the presence of extracellular Ca2+, the substances thapsigargin, 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBuBHQ), and ionomycin reversibly suppressed the bradykinin-induced oscillations. Thapsigargin and tBuBHA, which are known to block the Ca2+ ATPase of endoplasmic reticulum, caused a transient rise in cytosolic Ca2+ activity, monitored with Fura-2, in suspensions of rat glioma cells or of mouse neuroblastoma-rat glioma hybrid cells. After a transient Ca2+ rise caused by thapsigargin, tBuBHQ, or ionomycin, the Ca2+ response to bradykinin which is known to be due to release of Ca2+ from internal stores was suppressed. This indicates that thapsigargin and tBuBHQ deplete internal Ca2+ stores as already seen previously for ionomycin. Thus, the inhibition of the membrane potential oscillations by thapsigargin, tBuBHQ, and ionomycin indicates that the oscillations are associated with activation of InsP3-sensitive Ca2+ stores. In some cells composite oscillation patterns which consisted of two independent oscillations with different amplitudes that overlapped additively were seen. We discuss that this pattern and the concentration dependency of the oscillations could be due to "quantal" Ca2+ release from stores with different inositol 1,4,5-triphosphate sensitivities. Subsidence of the oscillations after omission of extracellular Ca2+ seems to be due to a lack of replenishment of the intracellular stores with Ca2+, which comes from the extracellular compartment.  相似文献   

17.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

18.
When Trypanosoma brucei procyclic trypomastigotes were permeabilized with digitonin in a reaction medium containing MgATP, succinate, and 3.5 microM free Ca2+, they lowered the medium Ca2+ concentration to the submicromolar level (0.05-0.1 microM), a range that correlates favorably with that detected in the intact cells with fura-2. The carbonyl cyanide p-trifluoromethoxyphenylhydrazone-insensitive Ca2+ uptake, certainly represented by the endoplasmic reticulum, was completely inhibited by 500 microM vanadate. When vanadate instead of carbonyl cyanide p-trifluoromethoxyphenylhydrazone was present, the Ca2+ set point was increased to 0.6-0.7 microM. The succinate dependence and carbonyl cyanide p-trifluoromethoxyphenylhydrazone sensitivity of the later Ca2+ uptake indicate that it may be exerted by the mitochondria. When bloodstream trypomastigotes were used, neither succinate nor alpha-glycerophosphate stimulated the mitochondrial Ca2+ uptake. The mitochondrial Ca2+ transport could be measured only in the presence of ATP and 500 microM vanadate to inhibit the endoplasmic reticulum uptake. Bloodstream trypomastigotes have a lower cytosolic Ca2+ concentration, as detected with fura-2 and a smaller extramitochondrial Ca2+ pool than procyclic trypomastigotes. Despite the presence of inositol phosphates, as determined by [3H]inositol incorporation, and the large extramitochondrial Ca2+ pool of procyclic trypomastigotes (61.7 nmol of Ca2+/mg of protein), no inositol 1,4,5-trisphosphate-sensitive Ca2+ release could be detected in these parasites.  相似文献   

19.
In the downstream regions of stenotic vessels, cells are subjected to a vortex motion under low shear forces, and atherosclerotic plaques tend to be localized. It has been reported that such a change of shear force on endothelial cells has an atherogenic effect by inducing the expression of adhesion molecules. However, the effect of vortex-induced mechanical stress on leukocytes has not been investigated. In this study, to elucidate whether vortex flow can affect the cell adhesive property, we have examined the effect of vortex-mediated mechanical stress on integrin activation in THP-1 cells, a monocytic cell line, and its signaling mechanisms. When cells are subjected to vortex flow at 400-2,000 rpm, integrin-dependent cell adhesion to vascular cell adhesion molecule-1 or fibronectin increased in a speed- and time-dependent manner. Next, to examine the role of Ca(2+) in this integrin activation, various pharmacological inhibitors involved in Ca(2+) signaling were tested to inhibit the cell adhesion. Pretreatment of cells with BAPTA-AM, thapsigargin +NiCl(2), or U-73122 (a phospholipase C inhibitor) inhibited cell adhesion induced by vortex-mediated mechanical stress. We also found that W7 (a calmodulin inhibitor) blocked the cell adhesion. However, pretreatment of cells with GdCl(3), NiCl(2), or ryanodine did not affect the cell adhesion. These data indicate that vortex-mediated mechanical stress induces integrin activation through calmodulin and inositol 1,4,5-trisphosphate-mediated Ca(2+) releases from intracellular Ca(2+) stores in THP-1 cells.  相似文献   

20.
S R Muir  D Sanders 《Plant physiology》1997,114(4):1511-1521
Previous studies have indicated that the vacuole represents the major inositol 1,4,5-trisphosphate (InsP3)-mobilizable Ca2+ pool in higher plants. This findings is in contrast to animal cells, in which the endoplasmic reticulum and plasma membrane constitute the dominant InsP3-sensitive membranes. We used membrane vesicles prepared from cauliflower (Brassica oleracae L.) inflorescences that were separated on continuous sucrose gradients to demonstrate that cauliflower possesses at least two distinct membrane populations that are sensitive to InsP3. One of these membrane populations in nonvacuolar in origin and relies upon a Ca(2+)-ATPase to accumulate Ca2+. In addition, we have shown that two polyclonal antibodies, raised against peptides corresponding to the animal type 1 InsP3 receptor, recognize immunologically related proteins in cauliflower, and that the distribution of immunoreactive proteins on a linear sucrose gradient reinforces the notion that cauliflower contains more than one membrane subtype that is sensitive to InsP3. To our knowledge, this is the first report describing an InsP3-sensitive Ca2+ store other than the vacuole in higher plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号