首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of porcine submaxillary N-acetylgalactosaminyltransferase and uridine diphospho-N-acetyl-D-galactosamine, approx. 1.2-1.5 mol of N-acetylgalactosamine were transfered per mol of myelin basic protein. Tritium-labelled N-acetylgalactosamine-labelled basic protein was digested with trypsin and the peptides were separated by HPLC and the radioactivity measured. Most of the radioactivity was associated with three peptide peaks (I, II and III) containing 17, 69 and 6% of the total radioactivity, respectively. The remaining radioactivity was distributed amongst several peptides, each containing less than 2.5% of the total radioactivity. Glycosylation of the basic proteins isolated from human, bovine and guinea pig myelins showed that they were all equally good acceptors. In spite of differences in the peptide profiles of the basic proteins from different species, the distribution of radioactivity between the three peptide peaks was similar for all the species studied. The transfer of N-acetylgalactosamine to peptide II was much faster than to peptides I and III. The apparent Km values of the three peptides were within a narrow range of 0.52-0.63 mM, whereas the Vmax values were considerably different. The glycosylated peptide peaks (I, II and III) were separated by electrophoresis, the radioactivity measured, and amino acid compositions determined after hydrolysis. The major radioactive peptides of the human basic protein were identified with tryptic peptides containing the following sequences: (formula; see text)  相似文献   

2.
Peptides containing a triprolyl sequence carboxyl to a threonine residue can be O-glycosylated by a crude Triton x-100 extract of porcine submaxillary glands (Young, J. D., Tsuchiya, D., Sandlin, D. E., and Holroyde, M. J. (1979) Biochemistry 18, 4444-4448). In the present paper, we have studied the characteristics of the O-glycosylating enzyme, UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosamine transferase, from a membrane extract of bovine submaxillary glands using 11 synthetic peptide substrates in which the Thr-Pro-Pro-Pro was varied. The effect of these changes was measured by determining the apparent Km and Vmax values of the substrates. The studies thus far reveal: threonine cannot be glycosylated without a carboxyl triprolyl sequence; the alpha amino acid group of the threonine must be blocked; the nature of the group NH2-terminal to the threonine affects the kinetics of the reaction; and one residue can be between the threonyl and the triprolyl sequence. The triprolyl sequence in a protein may be an important signal for O-glycosylation.  相似文献   

3.
Immunization of animals with proteolipid protein, the major protein constituent of central nervous system myelin, produces experimental allergic encephalomyelitis. The goal of the present study was to identify an encephalitogenic determinant of this protein. For this purpose, SWR mice were immunized with five groups of pooled synthetic peptides corresponding to various regions of the myelin proteolipid protein sequence. Clinical EAE was observed in only one group. Inguinal lymph node cells from animals in this group responded ([3H]thymidine incorporation) to a peptide within the pool containing residues 103-116 YKTTICGKGLSATV. Mice subsequently immunized with 50 nmol of this peptide developed severe EAE within 3 wk, and their T cell-enriched inguinal lymph node cells responded specifically to this peptide. Control mice immunized to proteolipid peptide 202-217 DARMYGVLPWNAFPGK did not develop experimental allergic encephalomyelitis, and their inguinal lymph node cells were unresponsive to either peptide. Thus, a peptide corresponding to a sequence within the proteolipid protein can produce classical acute experimental allergic encephalomyelitis. This is the first report of a synthetic encephalitogenic peptide from myelin proteolipid protein.  相似文献   

4.
Three separate peptide regions were isolated from the chymotrypsin digest of the encephalitogenic basic protein from bovine myelin of the central nervous system. The peptides induced delayed type hypersensitivity (DTH) and elicited delayed skin reactivity in experimental animals. However, none of the isolated peptides was capable of inducing experimental allergic encephalomyelitis (EAE). The amino acid sequence of peptide CTP-3 (Gly-Ala-Glu-Gly-Gln-Lys-Pro-Gly-Phe-OH) and peptide CTP-la were found to overlap the C-terminal sequence of encephalitogenic peptides E (residue 112–125) and T8 (residue 65–74) of the basic protein, respectively. The third DTH inducing peptide, CB1-T1, (N-Acetyl-Ala-Ser-Ala-Gln-Lys-OH) was found to overlap the N-terminal sequence of the basic protein molecule. Common to the three DTH inducing peptides, to the basic protein and to the encephalitogenic peptides E-S and T8S is the X-X-X-Gln-Lys sequence. Isolation of the regions of the basic protein that are responsible for DTH provides antigens for the study of the mechanism of cellular immunity in EAE.  相似文献   

5.
Human myelin basic protein (MBP) is composed of several charge isomers, the result of various post-translational modifications. One of the charge isomers C-8, has been shown in our laboratory to contain six citrullinyl residues which replace arginyl residues at selected sites in the MBP. In order to determine the disposition of the citrulline-containing charge isomers in the myelin stack, we prepared specific antisera against the citrullinyl group. Since 9-fluorenylmethoxycarbonyl (Fmoc)-citrulline, required for the preparation of the synthetic peptides to be used for antibody production, was not commercially available, synthesis of the Fmoc-citrulline was a necessary prerequisite. The synthesis and purification of the N-9-fluorenylmethyloxycarbonyl derivative of citrulline is described. It was characterized by thin layer chromatography, 1H and 13C NMR spectroscopy, fast-atom bombardment mass spectroscopy, and thermal analyses. It was used in the automated peptide synthesis of a peptide Ala-Cit-His-Gly-Phe-Leu-Pro-Cit-His-Arg corresponding to residues 24-33 and Gly-Cit-Asp-Ser-Arg-Ser-Gly-Ser-Pro-Met-Ala-Cit-Arg, corresponding to residues 158-170 of the C-8 sequence, a naturally occurring charge isomer of human myelin basic protein, and a tetracitrulline peptide, Cit-Cit-Cit-Cit-Gly. The tetracitrulline peptide was used for the production of an antibody shown to react only with synthetic peptides and proteins containing citrulline. This antibody was used to distinguish between a citrulline-containing protein, C-8, a naturally occurring charge isomer of MBP, and a non-citrulline-containing charge isomer of MBP, C-1.  相似文献   

6.
Sequence of Guinea Pig Myelin Basic Protein   总被引:5,自引:5,他引:0  
This paper proposes a tentative amino acid sequence of guinea pig myelin basic protein obtained by comparison of peptide fragments of the guinea pig and bovine proteins. Analyses of the tryptic peptides confirmed the known sequence differences in the NH2-terminal half of the molecule and showed that in the COOH-terminal half of the guinea pig protein Ser131 was missing, Ala136 - His137 was deleted, Leu140 was replaced by Phe, and an extra Ala was inserted somewhere within sequence 142-151 (tryptic peptide T23 ). Sequence determination of guinea pig tryptic peptides corresponding to residues 130-134 ( T20 ), 135-138 ( T21 ), and 142-151 ( T23 ) of the bovine protein confirmed the above sequence changes and placed the extra Ala between Gly142 and His143 . The sequence of the region corresponding to bovine residues 130-143 is thus Ala-Asp-Tyr-Lys-Ser-Lys-Gly-Phe-Lys-Gly-Ala-His. No species differences were observed in the amino acid compositions of the remaining tryptic peptides obtained from the COOH-terminal half of the molecule. Based upon these results, the guinea pig basic protein contains 167 amino acid residues and has a molecular weight of 18,256.  相似文献   

7.
The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.  相似文献   

8.
In the presence of porcine submaxillary N-acetylgalactosaminyltransferase and uridine diphospho-N-acetyl-D-galactosamine, approx. 1.2–1.5 mol of N-acetylgalactosamine were transfered per mol of myelin basic protein. Tritium-labelled N-acetylgalactosamine-labelled basic protein was digested with trypsin and the peptides were separated by HPLC and the radioactivity measured. Most of the radioactivity was associated with three peptide peaks (I, II and III) containing 17, 69 and 6% of the total radioactivity, respectively. The remaining radioactivity was distributed amongst several peptides, each containing less than 2.5% of the total radioactivity. Glycosylation of the basic proteins isolated from human, bovine and guine pig myelins showed that they were all equally good acceptors. In spite of differences in the peptide profiles of the basic proteins from different species, the distribution of radioactivity between the three peptide peaks was similar for all the species studies. The transfer of N-acetylgalactosamine to peptide II was much faster than to peptides I and III. The apparent Km values of the three peptides were within a narrow range of 0.52–0.63 mM, whereas the Vmax values were considerably different. The glycosylated peptide peaks (I, II and III) were separated by electrophoresis, the radioactivity measured, and amino acid compositions determined after hydrolysis. The major radioactive peptides of the human basic protein were identified with tryptic peptides containing the following sequences:
  相似文献   

9.
Equilibrium and nonequilibrium competitive inhibition analyses of a number of antisera to peptide S81 and S82 sequences were carried out through the use of inhibition radioimmunoassays with [125I]S81, [125I]S82, and [125I]S79 and a panel containing 18 related peptides and five myelin basic protein preparations. Two principal determinants were identified, one of them sequential, the other nonsequential. The sequential determinant involved a peptide at or near the C-terminal end of S82 that could be blocked by an interchange of asparagine for glycine at the C terminus. The nonsequential determinant was dominant for a number of rabbit and rat antisera, both anti-S82 and anti-S81, and was shared not only by S81 and S82 but also by S8 and S80, i.e., the family of residues of bovine MBP sequence 69–83. Neither determinant was expressed in any of the myelin basic protein preparations, and the nonsequential determinant was not expressed in peptide sequences smaller than S8.  相似文献   

10.
The peptide portion of the lipopeptide isolated from bovine myelin basic protein contained glycine, lysine, and serine in a 2:1:1 molar ratio as determined by amino acid analysis. The N-terminus of the peptide was determined to be glycine. The tetrapeptide Gly53-Ser-Gly-Lys56 was the only segment of myelin basic protein that matched the above two characteristics. This tetrapeptide is highly conserved among the myelin basic proteins sequenced so far. After the selective degradation of the lipopeptide, phosphoserine was identified in the acid hydrolysate, thus indicating that Ser-54 of myelin basic protein in bovine brain is the site of attachment of polyphosphoinositide. Interestingly, serine-54 of myelin basic protein can be phosphorylated by the endogenous protein kinase myelin. However, myelin basic protein phosphorylated by the catalytic subunit of an exogenous soluble protein kinase failed to produce radioactively labeled lipopeptide. Hence the endogenous enzymes of myelin are thought to be involved in the formation of the covalent linkage between polyphosphoinositide and myelin basic protein. The conservation in sequence suggests a possible important structural role for the "phospholipidation" of myelin basic protein.  相似文献   

11.
Rhodopsin kinase phosphorylates serine- and threonine-containing peptides from bovine rhodopsin's carboxyl-terminal sequence. Km's for the peptides decrease as the length of the peptide is increased over the range 12-31 amino acids, reaching 1.7 mM for peptide 318-348 from the rhodopsin sequence. The Km for phosphorylation of rhodopsin is about 10(3) lower than that for the peptides, which suggests that binding of rhodopsin kinase to its substrate, photolyzed rhodopsin, involves more than just binding to the carboxyl-terminal peptide region that is to be phosphorylated. A synthetic peptide from the rhodopsin sequence that contains both serines and threonines is improved as a substrate by substitution of serines for the threonines, suggesting that serine residues are preferred as substrates. Analogous 25 amino acid peptides from the human red or green cone visual pigment, a beta-adrenergic receptor, or M1 muscarinic acetylcholine receptors are better substrates for bovine rhodopsin kinase than is the peptide from bovine rhodopsin. An acidic serine-containing peptide from a non-receptor protein, alpha s1B-casein, is also a good substrate for rhodopsin kinase. However, many basic peptides that are substrates for other protein kinases--histone IIA, histone IIS, clupeine, salmine, and a neurofilament peptide--are not phosphorylated by rhodopsin kinase. Polycations such as spermine or spermidine are nonessential activators of phosphorylation of rhodopsin or its synthetic peptide 324-348. Polyanions such as poly(aspartic acid), dextran sulfate, or poly(adenylic acid) inhibit the kinase. Poly(L-aspartic acid) is a competitive inhibitor with respect to rhodopsin (KI = 300 microM) and shows mixed type inhibition with respect to ATP.  相似文献   

12.
The P2 protein of bovine root myelin: partial chemical characterization.   总被引:1,自引:0,他引:1  
The P2 protein of bovine root myelin has chemical characteristics which differentiate it from other myelin basic proteins. The tryptic peptide map of the bovine P2 protein is distinctly different from the map of either the rabbit PI protein or the bovine CNS myelin basic protein. The tryptic peptides of the P2 protein show no overlap in either map positions or amino acid content with the peptides of the CNS myelin basic protein. Analysis of the individual peptides in the P2 map accounted for all of the amino acids present in the analysis of the whole protein. The P2 protein has a blocked NH2-terminus, lysine at its COOH-terminus and no hexosamine. CD studies revealed that the P2 protein has a very stable β-structure in aqueous solution at neutral or basic pH and retains much of this structure in acid and in 8 M urea. It is suggested that these structural properties are relevant to the dual role of the P2 protein as a membrane constituent and as an antigen.  相似文献   

13.
A rat T cell line of the "helper" phenotype (W3/25-positive, OX 8-negative) has been derived from Lewis rats inoculated with P2 protein isolated from bovine PNS myelin. The line LiP2/A is exquisitely specific for P2 protein, exhibiting no reactivity to bovine basic protein or to PPD. In addition to responding strongly to the intact P2 protein, the line cells show some response to a synthetic peptide containing the neuritogenic amino acid sequence of P2 protein (SP-B, residues 66-78). Intravenous inoculation of naive rats with as few as 10(4) activated LiP2/A cells leads to the onset of mild clinical signs of experimental allergic neuritis. Higher doses of cells lead to more severe clinical disease. Histologic examination of clinically ill animals confirmed the disease as EAN. The pathologic lesions were confined to the PNS and spared the central nervous system. The lesions consisted of marked perivascular cuffs and infiltrates of inflammatory cells associated with marked degenerative changes--demyelination and some axonal degeneration.  相似文献   

14.
Bovine P2 Protein: Sequence at the NH2-Terminal of the Protein   总被引:2,自引:2,他引:0  
Sequence data from key fragments of the P2 protein established the order of cyanogen bromide (CNBr) peptides in the structure of the protein and the primary structure for approximately one-half of the molecule. Data were obtained from the three tryptic peptides of blocked NH2-terminal CNBr peptide (CN3), the large CNBr peptide of P2 protein (CN1), and a fragment obtained from P2 by cleavage at tryptophan with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine. This last fragment was found to contain an over-lapping sequence that proved the juxtaposition of CN1 and CN3 in P2 protein. Thus, based on this fact and the characteristics of the CNBr peptides, the P2 structure is composed of CNBr peptides in the order: CN3-CN1-CN2(Val)-CN2(Lys). A comparison was made between the partial sequence of P2 protein and the equivalent portion of the structure of bovine myelin basic protein. The structures of these two proteins were found to be distinctly different although certain similarities are found.  相似文献   

15.
Abstract— Two basic peptides (B1 and B2) were derived from bovine spinal cord following in situ proteolysis at 37°C for 10–24 h. These peptides do not arise as degradation products from the A1 protein as shown by amino acid composition and end group analysis; rather they appear to originate from some larger basic protein in the spinal cord having similarities to the P2 protein, a basic protein found in peripheral nerve myelin. The peptides were purified following defatting, acid extraction, and ammonium sulphate fractionation, by chromatography on Amberlite IRC-50 resin using guanidinium chloride. The peptides, found generally in a 4:1 ratio of B1 to B2, appeared homogeneous on gel electrophoresis and immunodiffusion. Approximately 25–60 mg of peptides was obtained per 100 g wet spinal cord.
In contrast to the basic A1 protein from myelin, neither of these peptides nor their pepsin digests were encephalitogenic. They do not cross-react immunologically with the basic A1 protein, but cross-react with each other. These peptides further differ from the A1 protein in their tryptic peptide map, size (B1, 63 residues; B2, 54 residues), and composition particularly the high lysine: arginine ratio, and low histidine content. Like the A1 protein, however, they contain a tryptophan residue and a blocked NH2-terminal amino acid; peptide Bl has COOH-terminal valine. It was concluded that the basic peptides represent a fragment of a hitherto unidentified protein(s) of the nervous system.  相似文献   

16.
Amino Acid Sequence of Porcine Myelin Basic Protein   总被引:6,自引:6,他引:0  
The myelin basic protein (BP) of pig brain was cleaved into its constituent tryptic peptides and the amino acid composition of each was determined. Those tryptic peptides that had not been sequenced previously were cleaved with dipeptidyl peptidases and the resulting dipeptides were trimethylsilated, separated by gas chromatography, and identified by mass spectrometry. Carboxypeptidases B and Y were used to establish the COOH-terminal sequences of some of the tryptic peptides; one tryptic peptide (sequence 76-92) was cleaved with thermolysin and the thermolytic peptides were analyzed. From the results of the present study together with those reported previously, it has been possible to determine the complete amino acid sequence of the protein. The protein consists of 172 residues and has a theoretical molecular weight of 18,604. Its amino acid sequence is identical with that reported for the homologous bovine protein with the following exceptions: Ser replaces (bovine) Ala2; His-Gly is inserted between Arg9 and Ser10; Ala replaces Ser45; His and Gly replace Gly76 and His77, respectively; Pro replaces Ser131 and Ser135; Ala is inserted between Gly142 and His143; and Gln replaces His143.  相似文献   

17.
The substrate specificity of phospholipid/Ca2+-dependent protein kinase (protein kinase C) was studied using synthetic peptides, in particular those corresponding to the amino acid sequence around serine 115 in bovine myelin basic protein (MBP). It was found that MBP (104-118) and MBP (104-123) were substrates for the enzyme, with apparent Km values of 14 and 10 microM, respectively. Neither MBP (111-118) nor MBP (111-123) were phosphorylated, indicating that an additional segment of sequence extending toward the N terminus, but not toward the C terminus, was essential for the substrate activity of the peptides. Of the alanine-substituted analogs examined, [Ala 105] MBP (104-118) was comparable to the parent peptide, whereas [Ala 107] MBP (104-118) and [Ala 113] MBP-(104-118) were much poorer substrates. These findings indicated that lysine 105 was not essential, but both arginine 107 and arginine 113 were important specificity determinants. Initial studies revealed that [Ala 113] MBP (104-118) inhibited phosphorylation by the enzyme of the parent peptide and, to a lesser extent, the intact MBP(1-170). Serine 115 was the only site phosphorylated in the analog peptides [Ala 105] MBP (104-118) and [Ala 107]MBP (104-118). In the parent peptide, serine 115 was the initial site of phosphorylation but after prolonged phosphorylation other sites became phosphorylated (serine 110 and/or serine 112), further supporting the concept that arginine residues act as essential substrate specificity determinants for phospholipid/Ca2+-dependent protein kinase.  相似文献   

18.
The specificities of two monoclonal IgM antibodies (18.25 and 21.14.2) evoked in mice with guinea pig myelin basic protein were examined and interpreted in terms of a specific folding of the protein's polypeptide chain. Studies with guinea pig and rabbit myelin basic protein fragments showed that a region encompassing the central Phe-Phe (87-88) sequence is obligatory, but not sufficient, for reactivity with antibody 18.25. Appreciable reactivity was observed for rabbit peptides 22-95 and 45-151, and lower, but significant, reactivity was shown by peptide 32-95. Only very weak reactivity was seen with peptide 44-95. No reactivity was observed with peptide 1-95 after its lysine residues were acetylated, acetamidinated, or guanidinated. These results have been interpreted in terms of a polypeptide chain folding that creates an epitope within sequence Val-Val-His-Phe-Phe-Lys-Asn-Ile-Val (84-92). The specific conformation of this epitope, which includes probably the Lys-89 and possibly the Asn-90 and Val-92 side chains, could be formed by the association of sequence 84-92 with either sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe (37-45) or with sequence Val-Leu-Ser-Arg-Phe (108-112) to form beta-sheet structures essentially identical with those that appear to be present in the intact BP [Martenson R.E.J. Neurochem. 46, 1612-1622 (1986)]. The second monoclonal antibody, no. 21.14.2, reacts only with guinea pig myelin basic protein and fragments containing the species-restricted sequence Arg-Ala-Asp-Tyr-Lys-Ser-Lys (129-135).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The precipitation by antibodies to intact myelin basic protein (BP) and to synthetic peptides containing a sequence based on the region 65 to 83 of bovine BP, S82, S81, S79, and S24, of intact BP in solution or bound to lipid vesicles was compared, using 125I-BP or 14C-DPPC-labeled lipid-BP vesicles. The antipeptide antibodies were shown earlier to recognize conformational determinants which are not expressed in the intact protein in solution. Several anti-BP antibodies precipitated more of the BP free in solution than when bound to lipid vesicles, suggesting that some of the determinants recognized by these antibodies were either sequestered in the bilayer or were altered in conformation. In contrast, one anti-peptide antisera, which had a high titer for the conformational determinant in two of these peptides, S82 and S81, precipitated the protein to a significant degree when it was bound to PG vesicles, even though it did not react with the intact protein in solution. These results indicated that PG was able to confer on the protein the unique peptide conformation recognized by this antibody. PS was less effective, and other lipids were ineffective at conferring this conformation on the protein, supporting earlier results which showed that the conformation of the protein is influenced by the lipid composition of its environment. None of the other anti-peptide antibodies studied bound to the protein either in solution or in lipid vesicles. These results indicate that the lipid environment can sequester or alter the conformation of some antigenic determinants, preventing recognition by some anti-BP antibodies, and can expose or generate other conformational determinants, allowing recognition by an anti-peptide antiserum.  相似文献   

20.
Synthetic peptide S24 (TTHYGSLPQKG) represents residues 65-74 of myelin basic protein (MBP) and contains the major determinant involved in the development of experimental allergic encephalomyelitis (EAE) in rabbits. This peptide is completely conserved in all nonprimate mammals for which sequence information is available. Although it is clear that peptides containing the S24 region are capable of inducing EAE, previous serologic studies have resulted in the conclusion that the determinant is "buried" or sequestered in intact MBP. Employing a liquid phase radioimmunoassay, we studied Ab responses to the S24 determinant in six rabbits injected with rat myelin. Two of the six animals developed small but measurable responses to the S24 determinant. In one of these rabbits, the response was boosted with a covalent conjugate of S82 and methylated BSA (MBSA). We also measured antibodies to the S24 determinant in rabbit antisera to human, monkey, dog, bovine, and the large and small forms of rat MBP. By nonequilibrium inhibition analysis, we determined that the antibody responses to these antigens were all directed to a determinant composed of residues 66-71 of MBP, and that intact MBP inhibits the binding of these antibodies to radiolabeled S24. The results demonstrate that the rabbit encephalitogenic region of myelin basic protein is exposed in the intact molecule both as an immunogen and as a reactant in liquid-phase assays; furthermore, they demonstrate that MBP antigenicity leading to B cell responses does not necessarily depend on sequence differences between the injected protein and its counterpart in the host species. The latter finding reinforces the contention of Atassi that autoantibody responses are not exclusive to "evolutionary hypervariable locations."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号