首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nonribosomal peptides are processed on multifunctional enzymes called nonribosomal peptide synthetases (NRPSs), whose modular multidomain arrangement allowed the rational design of new peptide products. However, the lack of natural competence and efficient transformation methods for most of nonribosomal peptide producer strains prevented the in vivo manipulation of these biosynthetic gene clusters. In this study, we present methods for the construction of a genetically engineered Bacillus subtilis surrogate host for the integration and heterologous expression of foreign NRPS genes. In the B. subtilis surrogate host, we deleted the resident 26-kilobase srfA gene cluster encoding the surfactin synthetases and subsequently used the same chromosomal location for integration of the entire 49-kilobase bacitracin biosynthetic gene cluster from Bacillus licheniformis by a stepwise homologous recombination method. Synthesis of the branched cyclic peptide antibiotic bacitracin in the engineered B. subtilis strain was achieved at high level, indicating a functional production and proper posttranslational modification of the bacitracin synthetases BacABC, as well as the expression of the associated bacitracin self-resistance genes. This engineered and genetically amenable B. subtilis strain will facilitate the rational design of new bacitracin derivatives.  相似文献   

2.
Assay and characterization of a strong promoter element from B. subtilis   总被引:1,自引:0,他引:1  
A new strong promoter fragment isolated from Bacillus subtilis was identified and characterized. Using the heat stable beta-galactosidase as reporter, the promoter fragment exhibited high expression strength both in Escherichia coli and B. subtilis. The typical prokaryotic promoter conservation regions were found in the promoter fragment and the putative promoter was identified as the control element of yxiE gene via sequencing assay and predication of promoter. To further verify and characterize the cloned strong promoter, the putative promoter was sub-cloned and the beta-Gal directed by the promoters was high-level expressed both in E. coli and B. subtilis. By means of the isolated promoter, an efficient expression system was developed in B. subtilis and the benefit and usefulness was demonstrated through expression of three heterologous and homogenous proteins. Thus, we identified a newly strong promoter of B. subtilis and provided a robust expression system for genetic engineering of B. subtilis.  相似文献   

3.
Secretion of staphylococcal nuclease by Bacillus subtilis.   总被引:8,自引:3,他引:5       下载免费PDF全文
The staphylococcal nuclease (nuc) gene from Staphylococcus aureus has been cloned and expressed in Bacillus subtilis. The nuclease protein was expressed either from its own promoter and translation start signals, or from a combination of a B. subtilis promoter, ribosome binding site, and a signal peptide sequence. Greater than 80% of the active gene product was secreted into the medium, whereas, when a signal peptide sequence was absent, as little as 4% of the nuclease activity was found in the culture medium. Intracellular (or cell-bound) nuclease, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, was shown to have the molecular weight of the predicted precursor protein with the signal peptide. Levels of nuclease reached 50 mg per liter in the culture medium, depending on the growth medium and the strain used. These findings indicate the prospective use of nuclease as a model system for studying secretion of heterologous proteins in B. subtilis.  相似文献   

4.
We herein describe the development of a Bacillus subtilis system that can be used to produce large quantities of recombinant (r-) human salivary cystatins, a cysteine protease inhibitor of family 2 in the cystatin superfamily. The B. subtilis that lacked the alkaline protease E gene (DeltaaprE type mutant strain) was prepared by homologous recombination. The cDNA fragments coding for mature cystatins (S and SA) were ligated in frame to the DNA segment for the signal peptide of endoglucanase in the pHSP-US plasmid vector that was then use to transform the DeltaaprE type mutant strain of B. subtilis. The transformants carrying the expression vectors were cultivated in 5-L jar fermenters for 3 days at 30 degrees C. Both r-cystatin S and r-cystatin SA were successfully expressed and secreted into the culture broth, and were purified using a fast performance liquid chromatography system. The first use of DeltaaprE type mutant strain of B. subtilis made it possible to obtain a high yield of secreted protein, which makes this system an improvement over expression in Escherichia coli. We conclude that this system has high utility for expression of commercial quantities of secreted proteins.  相似文献   

5.
The stability of heterologous proteins secreted by gram-positive bacteria is greatly influenced by the microenvironment on the trans side of the cytoplasmic membrane, and secreted heterologous proteins are susceptible to rapid degradation by host cell proteases. In Bacillus subtilis, degradation occurs either as the proteins emerge from the presecretory translocase and prior to folding into their native conformation or after the native conformation has been reached. The former process generally involves membrane- and/or cell wall-bound proteases, while the latter involves proteases that are released into the culture medium. The identification and manipulation of factors that influence the folding of heterologous proteins has the potential to improve the yield of secreted heterologous proteins. Recombinant anthrax protective antigen (rPA) has been used as a model secreted heterologous protein because it is sensitive to proteolytic degradation both before and after folding into its native conformation. This paper describes the influence of the microenvironment on the trans side of the cytoplasmic membrane on the stability of rPA. Specifically, we have determined the influence of net cell wall charge and its modulation by the extent to which the anionic polymer teichoic acid is D-alanylated on the secretion and stability of rPA. The potential role of the dlt operon, responsible for D-alanylation, was investigated using a Bacillus subtilis strain encoding an inducible dlt operon. We show that, in the absence of D-alanylation, the yield of secreted rPA is increased 2.5-fold. The function of D-alanylation and the use of rPA as a model protein are evaluated with respect to the optimization of B. subtilis for the secretion of heterologous proteins.  相似文献   

6.
7.
Secretion vectors based on the genes from Bacillus amyloliquefaciens P for alkaline protease (aprBamP) and neutral protease (nprBamP) were constructed. With both aprBamP and nprBamP, a unique restriction site was introduced 3' of the predicted signal coding region by using the technique of oligonucleotide-directed mutagenesis. The new sites enabled us to fuse a heterologous gene to the expression and secretion elements. We used the protein A gene (spa) from Staphylococcus aureus as a heterologous gene. Bacillus subtilis cells carrying the resulting apr-spa or npr-spa gene fusions synthesized the fusion protein. B. subtilis cells were also capable of removing the signal peptide from the fusion protein, as indicated by the appearance of processed protein A into the growth medium. In addition, these gene fusions allowed us to identify the signal processing site of both the APR-SPA and NPR-SPA proteins.  相似文献   

8.
The cloned T brucei GAPDH gene was inserted within the B subtilis GAPDH gene, carried by pUC18. Upon transformation of B subtilis by this plasmid, not able to replicate in this host, the whole plasmid was inserted in the resident chromosome, presumably by a single recombination event between homologous, chromosomal and plasmid-borne sequences. The heterologous gene was expressed, as revealed by immunological reaction with monoclonal antibodies, recognizing specifically T brucei GAPDH. T brucei GAPDH, having little or no enzyme activity, comprises about 1.56% of cellular proteins. Peptide mapping showed that a fusion of a 7.5-kDa peptide had occurred to the N-terminal part of T brucei GAPDH. This fused protein is presumably the N-terminal part of B subtilis GAPDH, in agreement with the construction of the integrative plasmid.  相似文献   

9.
4'-Phosphopantetheine transferases (PPTases) transfer the 4'-phosphopantetheine moiety of coenzyme A onto a conserved serine residue of acyl carrier proteins (ACPs) of fatty acid and polyketide synthases as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases. This posttranslational modification converts ACPs and PCPs from their inactive apo into the active holo form. We have investigated the 4'-phosphopantetheinylation reaction in Bacillus subtilis, an organism containing in total 43 ACPs and PCPs but only two PPTases, the acyl carrier protein synthase AcpS of primary metabolism and Sfp, a PPTase of secondary metabolism associated with the nonribosomal peptide synthetase for the peptide antibiotic surfactin. We identified and cloned ydcB encoding AcpS from B. subtilis, which complemented an Escherichia coli acps disruption mutant. B. subtilis AcpS and its substrate ACP were biochemically characterized. AcpS also modified the d-alanyl carrier protein but failed to recognize PCP and an acyl carrier protein of secondary metabolism discovered in this study, designated AcpK, that was not identified by the Bacillus genome project. On the other hand, Sfp was able to modify in vitro all acyl carrier proteins tested. We thereby extend the reported broad specificity of this enzyme to the homologous ACP. This in vitro cross-interaction between primary and secondary metabolism was confirmed under physiological in vivo conditions by the construction of a ydcB deletion in a B. subtilis sfp(+) strain. The genes coding for Sfp and its homolog Gsp from Bacillus brevis could also complement the E. coli acps disruption. These results call into question the essential role of AcpS in strains that contain a Sfp-like PPTase and consequently the suitability of AcpS as a microbial target in such strains.  相似文献   

10.
双功能枯草杆菌诱导型高效表达分泌载体的构建与鉴定   总被引:1,自引:0,他引:1  
利用大肠杆菌质粒pSP72和枯草杆菌质粒pUB18共整合得到双功能克隆载体pSB。在pSB多克隆位点依次引入枯草杆菌果聚糖蔗糖酶基因启动子-信号肽序列sacBp.s.、地衣芽孢杆菌淀粉酶基因终止子序列α-amyT和短小芽孢杆菌增强子基因degQ,最终构建了双功能枯草杆菌诱导型高效表达分泌载体pSBPTQ。将VasostatinⅠ基因作为靶基因检测sacBp.s.、α-amyT和degQ在pSBPTQ进行外源基因表达时的功能,结果表明,在蔗糖诱导下,sacB启动子有效启动了Vasostatin I基因的表达和分泌,α-amy T提高了VasostatinⅠ基因的转录效率,而degQ明显增强了VasostatinⅠ基因的表达水平。VasostatinⅠ基因在蔗糖诱导下成功表达并分泌到枯草杆菌细胞外,蛋白质分泌效率达到90%左右。质粒稳定性试验结果表明,经过40个世代之后,质粒pSBPTQ在枯草杆菌DB1342中仍旧保持在83%以上。  相似文献   

11.
枯草杆菌表达系统的研究进展   总被引:15,自引:0,他引:15  
枯草杆菌由于具有非致病性、分泌蛋白能力强的特性的良好的发酵基础,是目前原核表达系统中分泌表达外源蛋白较理想的宿主。本阐述枯草杆菌基因表达的一般特点、表达载体、表达类型以及分泌表达存在的问题。  相似文献   

12.
An osmolarity-sensitive promoter fragment, P23423, isolated from Bacillus subtilis was characterized. The expression of β-galactosidase (β-Gal) driven by P23423 was regulated by osmolarity both in Escherichia coli and B. subtilis. The classical conserved region of this prokaryotic promoter was found within the sequence of the cloned fragment, and the putative promoter was identified as the control element of RNA not coding for protein (a RNA molecule that is not translated into a protein). The efficiency and benefit of this promoter was further demonstrated via osmolarity-induced expression of three other heterologous proteins in E. coli. Thus, this approach provided a simple and inexpensive inducible promoter element for the expression of cloned genes.  相似文献   

13.
Expression of the Bacillus subtilis or Bacillus amyloliquefaciens sacB gene in the presence of sucrose is lethal for a variety of bacteria. Sucrose-induced lethality can be used to select for inactivation of sacB by insertion of heterologous DNA in sensitive bacteria. This procedure has not been applicable to B. subtilis heretofore because expression of wild-type sacB is not detrimental to B. subtilis. The W29 mutation in the B. amyloliquefaciens sacB gene interferes with processing of the levansucrase signal peptide. The W29 mutation does not affect growth of B. subtilis in media lacking sucrose. However, this mutation inhibited growth of B. subtilis in media containing sucrose. Inactivation of the fructose polymerase activity encoded by sacB indicated that levan production was essential for sucrose-induced lethality. As a result, it was possible to select for cloned DNA in B. subtilis by insertional inactivation of the mutant sacB gene located on a multicopy plasmid vector in medium containing sucrose.  相似文献   

14.
Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of disulfide bonds that is the greatest bottleneck. Degradation of inefficiently or incorrectly oxidized proteins and the requirement for costly and time-consuming reduction and oxidation steps in the downstream processing of the proteins still are major limitations for full exploitation of B. subtilis for biopharmaceutical production. Therefore, the present study was aimed at developing a novel in vivo strategy for improved production of secreted disulfide-bond-containing proteins. Three approaches were tested: depletion of the major cytoplasmic reductase TrxA; introduction of the heterologous oxidase DsbA from Staphylococcus carnosus; and addition of redox-active compounds to the growth medium. As shown using the disulfide-bond-containing molecule Escherichia coli PhoA as a model protein, combined use of these three approaches resulted in secretion of amounts of active PhoA that were approximately 3.5-fold larger than the amounts secreted by the parental strain B. subtilis 168. Our findings indicate that Bacillus strains with improved oxidizing properties can be engineered for biotechnological production of heterologous high-value proteins containing disulfide bonds.  相似文献   

15.
AIMS: To determine if cereulide, the emetic toxin produced by Bacillus cereus, is produced by a nonribosomal peptide synthetase (NRPS). METHODS AND RESULTS: NC Y, an emetic strain of Bacillus cereus, was examined for a NRPS gene using PCR with primers recognizing a fragment of a NRPS gene from the cyanobacterium Microcystis. The amplicon was sequenced and compared with other gene sequences using BLAST analysis, which showed that the amplicon from strain NC Y was similar in sequence to peptide synthetase genes in other micro-organisms, including Bacillus subtilis and B. brevis, while no such sequence was found in the complete genome sequence of a nonemetic strain of B. cereus. Specific PCR primers were then designed and used to screen 40 B. cereus isolates previously implicated in outbreaks of foodborne illness. The isolates were also screened for toxin production using the MTT cell cytotoxicity assay. PCR and MTT assay screening of the B. cereus isolates revealed a high correlation between the presence of the NRPS gene and cereulide production. CONCLUSIONS: The results indicate that cereulide is produced by a NRPS complex. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to provide evidence identifying the mechanism of production of cereulide, the emetic toxin of B. cereus. The PCR primers developed in the study allow determination of the potential for cereulide production among isolates of B. cereus.  相似文献   

16.
Intergenotic Transformation of the Bacillus subtilis Genospecies   总被引:8,自引:11,他引:8       下载免费PDF全文
A multiple auxotrophic derivative of Bacillus subtilis 168 (strain BR151 carrying lys-3, trpC2, metB10) was transformed with deoxyribonucleic acid (DNA) isolated from B. subtilis 168, Bacillus amyloliquefaciens H, B. subtilis HSR, Bacillus pumilus, and Bacillus licheniformis. Transformation with heterologous DNA occurred at a very low frequency for the three auxotrophic markers. Heterologous transformation to rifampin resistance was 100 to 1,000 times more efficient than transformation to prototrophy. Transformants from the various heterologous exchanges were used to prepare donor DNA. The fragment of integrated DNA from the heterologous (foreign) species, termed the "intergenote," was capable of transforming BR151 with an efficiency almost equal to that of homologous DNA. When BR151 DNA contained the Rfm(R) (rifampin resistance) intergenote from B. amyloliquefaciens H, the frequency of transformation was frequently greater than that of the homologous DNA. Accompanying this increased efficiency was a marked change in the physiology of the cells. The growth rate of the transformants carrying this intergenote was approximately one-half that of either parental strain. Thus, in a prokaryotic transformation system, adverse side effects can occur after incorporation of a segment of foreign DNA.  相似文献   

17.
The N-acetylmuramic acid L-alanine amidase from Bacillus subtilis W-23 has been purified to apparent homogeneity. The enzyme is a monomer of molecular weight 51,000, which binds extremely tightly to homologous cell walls but not to heterologous cell walls, even of the closely related strain B. subtilis ATCC 6051. This difference in binding is only in part due to differences in teichoic acid between these two strains and to a large extent appears to represent differences in the arrangement of the peptidoglycan. A comparison of the amidase from B. subtilis W-23 and the enzyme previously purified from B. subtilis ATCC 6051 (Herbold and Glaser, 1975) shows that the two proteins, which cleave the same bond and are of the same size, do not cross-react immunologically and that the two enzymes are, therefore, not closely related in structure.  相似文献   

18.
The previously cloned Bacillus subtilis lipase gene (lip) was mapped on the chromosome and used in the construction of a B. subtilis derivative totally devoid of any lip sequence. Homologous overexpression was performed in this strain by subcloning the lip open reading frame on a multicopy plasmid under the control of a strong gram-positive promoter. A 100-fold overproducing strain was obtained, which should facilitate purification of the secreted protein. Furthermore, the delta lip strain BCL1050 constitutes an ideal host for the cloning of heterologous lipase genes.  相似文献   

19.
The mre genes of Escherichia coli and Bacillus subtilis are cell shape determination genes. Mutants affected in mre function are spheres instead of the normal rods. Although the mre determinants are not required for viability in E. coli, the mreB determinant is an essential gene in B. subtilis. Conflicting results have been reported as to whether the two membrane-associated proteins MreC and MreD are essential proteins. Furthermore, although the MreB protein has been studied in some detail, the roles of the MreC and MreD proteins in cell shape determination are unknown. We constructed a strain of B. subtilis in which expression of the mreC determinant is dependent upon the addition of isopropyl-beta-D-thiogalactopyranoside to the culture medium. Utilizing this conditional strain, it was shown that mreC is an essential gene in B. subtilis. Furthermore, it was shown that cells lacking sufficient quantities of MreC undergo morphological changes, namely, swelling and twisting of the cells, which is followed by cell lysis. Electron microscopy was utilized to demonstrate that a polymeric material accumulated at one side of the division septum of the cells and that the presence of this material correlated with the bending of the cell. The best explanation for the results is that the MreC protein is involved in the control of septal versus long-axis peptidoglycan synthesis, that cells lacking MreC perform aberrant septal peptidoglycan synthesis, and that lysis results from a deficiency in long-axis peptidoglycan synthesis.  相似文献   

20.
刘刚  张燕  邢苗 《生物工程学报》2006,22(2):191-197
探讨了双启动子对基于溶源性噬菌体构建的重组枯草杆菌中外源蛋白表达的影响。分别将不含或含有本身启动子的α-淀粉酶基因(来源于Bacillus amyloliquefaciens)和青霉素酰化酶基因(来源于Bacillus megaterium)克隆到溶源性枯草杆菌中,得到重组菌B.subtilisAMY1,B.subtilisAMY2,B.subtilisPA1以及B.subtilisPA2。由于同源重组,所克隆的片段整合到溶源性枯草杆菌中的噬菌体基因组上,并处于噬菌体强启动子的下游。在重组菌AMY1和PA1中,在热诱导的情况下外源基因的转录只受到噬菌体启动子的作用,而在重组菌AMY2和PA2中,在热诱导下外源基因的转录同时受到噬菌体启动子和基因本身所带启动子的作用。双启动子的应用使重组α-淀粉酶的表达量提高了133%,使重组青霉素酰化酶的表达量提高了113%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号