首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humans with primary biliary cirrhosis (PBC), a disease characterized by the destruction of small bile ducts, exhibit signature autoantibodies against mitochondrial Pyruvate Dehydrogenase Complex E2 (PDC-E2) that crossreact onto the homologous enzyme of Novosphingobium aromaticivorans, an ubiquitous alphaproteobacterium. Here, we show that infection of mice with N. aromaticivorans induced signature antibodies against microbial PDC-E2 and its mitochondrial counterpart but also triggered chronic T cell-mediated autoimmunity against small bile ducts. Disease induction required NKT cells, which specifically respond to N. aromaticivorans cell wall alpha-glycuronosylceramides presented by CD1d molecules. Combined with the natural liver tropism of NKT cells, the accumulation of N. aromaticivorans in the liver likely explains the liver specificity of destructive responses. Once established, liver disease could be adoptively transferred by T cells independently of NKT cells and microbes, illustrating the importance of early microbial activation of NKT cells in the initiation of autonomous, organ-specific autoimmunity.  相似文献   

2.
The E2 subunit of pyruvate dehydrogenase complex (PDC-E2) is the major autoantigen recognized by antimitochondrial Abs (AMA) in primary biliary cirrhosis (PBC). Recently, we replaced the lipoic acid moiety of PDC-E2 with a battery of synthetic structures designed to mimic a xenobiotically modified lipoyl hapten on a 12-aa peptide that was found within the immunodominant autoepitope of PDC-E2 and demonstrated that AMA in PBC reacted against several organic modified mimotopes as well as, or sometimes significantly better than, the native lipoyl domain. Based on this data, we immunized rabbits with one such xenobiotic organic compound, 6-bromohexanoate, coupled to BSA. One hundred percent of immunized rabbits developed AMA that have each and every characteristic of human AMAs with reactivity against PDC-E2, E2 subunit of branched chain 2-oxo-acid dehydrogenase, and E2 subunit of 2-oxoglutarate dehydrogenase complex. The rabbit AMA also inhibited enzymatic function of PDC-E2 and, importantly, binds to peptide sequences not present in the xenobiotic carrier immunogen. In contrast, BSA-immunized controls did not produce such activity. Our observation that animals immunized with a xenobiotic BSA complex produce autoantibodies that react not only with the xenobiotic, but also with mitochondrial autoantigens recognized by autoimmune PBC sera, suggests that environmental xenobiotic agents can be a risk factor for the induction of PBC.  相似文献   

3.
There are now several murine models of autoimmune cholangitis that have features both similar and distinct from human PBC. One such model, the NOD.c3c4 mouse, manifests portal cell infiltrates, anti-mitochondrial antibodies but also biliary cysts. The biliary cysts are not a component of PBC and not found in the other murine models. To address the immunopathology in these mice, we generated genetically B cell deficient Igμ−/− NOD.c3c4 mice and compared the immunopathology of these animals to control B cell sufficient NOD.c3c4 mice. B cell deficient mice demonstrated decreased number of non-B cells in the liver accompanied by reduced numbers of activated natural killer cells. The degree of granuloma formation and bile duct damage were comparable to NOD.c3c4 mice. In contrast, liver inflammation, biliary cyst formation and salivary gland inflammation was significantly attenuated in these B cell deficient mice. In conclusion, B cells play a critical role in promoting liver inflammation and also contribute to cyst formation as well as salivary gland pathology in autoimmune NOD.c3c4 mice, illustrating a critical role of B cells in modulating specific organ pathology and, in particular, in exacerbating both the biliary disease and the sialadenitis.  相似文献   

4.
We previously described the NOD.c3c4 mouse, which is protected from type 1 diabetes (T1D) because of protective alleles at multiple insulin-dependent diabetes (Idd) genes, but develops autoimmune biliary disease (ABD) resembling primary biliary cirrhosis (PBC). In this paper, we characterize the NOD.ABD strain, which is genetically related to the NOD.c3c4 strain but develops both ABD and T1D. Histologically, NOD.ABD biliary disease is indistinguishable from that in NOD.c3c4 mice. The frequency of effector memory (CD44(+)CD62L(-)) and central memory (CD44(+)CD62L(+)) CD8 T cells is significantly increased in the intrahepatic lymphocyte fraction of NOD.ABD mice, and NOD.ABD CD8 T cells produce more IFN-γ and TNF-α, compared with controls. NOD.ABD splenocytes can transfer ABD and T1D to NOD.c3c4 scid mice, but only T1D to NOD scid mice, suggesting that the genetic origin of the target organ and/or its innate immune cells is critical to disease pathogenesis. The disease transfer model, importantly, shows that biliary duct damage (characteristic of PBC) and inflammation precede biliary epithelial cell proliferation. Unlike T1D where both CD4 and CD8 T cells are required for disease transfer, purified NOD.ABD CD8 T cells can transfer liver inflammation into NOD.c3c4 scid recipients, and disease transfer is ameliorated by cotransferring T regulatory cells. Unlike NOD.c3c4 mice, NOD.ABD mice do not develop anti-nuclear or anti-Smith autoantibodies; however, NOD.ABD mice do develop the antipyruvate dehydrogenase Abs typical of human PBC. The NOD.ABD strain is a model of immune dysregulation affecting two organ systems, most likely by mechanisms that do not completely coincide.  相似文献   

5.
Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease in which an immune-mediated injury targets the small intrahepatic bile ducts. PBC is further characterized by highly specific serum antimitochondrial autoantibodies (AMAs) and autoreactive T cells, a striking female predominance, a strong genetic susceptibility and a plethora of candidate environmental factors to trigger the disease onset. For these reasons, PBC appears ideal to represent the developments of the clonal selection theory over the past decades. First, a sufficiently potent autoimmunogenic stimulus in PBC would require the coexistence of numerous pre-existing conditions (mostly genetic, as recently illustrated by genome-wide association studies and animal models) to perpetuate the destruction of the biliary epithelium by the immune system via the persistence of forbidden clones. Second, the proposed modifications of mitochondrial autoantigens caused by infectious agents and/or xenobiotics well illustrate the possibility that peculiar changes in the antigen structure and flexibility may contribute to tolerance breakdown. Third, the unique apoptotic features shown for cholangiocytes are the ideal setting for the development of mitochondrial autoantigen presentation to the immune system through macrophages and AMA; thus, turning the non-traditional mitochondrial antigen into a traditional one. This article will review the current knowledge on PBC etiology and pathogenesis in light of the clonal selection theory developments.  相似文献   

6.
Emerging evidence has suggested environmental factors as causative agents in the pathogenesis of primary biliary cirrhosis (PBC). We have hypothesized that in PBC the lipoyl domain of the immunodominant E2 component of pyruvate dehydrogenase (PDC-E2) is replaced by a chemical xenobiotic mimic, which is sufficient to break self-tolerance. To address this hypothesis, based upon our quantitative structure-activity relationship data, a total of 107 potential xenobiotic mimics were coupled to the lysine residue of the immunodominant 15 amino acid peptide of the PDC-E2 inner lipoyl domain and spotted on microarray slides. Sera from patients with PBC (n = 47), primary sclerosing cholangitis (n = 15), and healthy volunteers (n = 20) were assayed for Ig reactivity. PBC sera were subsequently absorbed with native lipoylated PDC-E2 peptide or a xenobiotically modified PDC-E2 peptide, and the remaining reactivity analyzed. Of the 107 xenobiotics, 33 had a significantly higher IgG reactivity against PBC sera compared with control sera. In addition, 9 of those 33 compounds were more reactive than the native lipoylated peptide. Following absorption, 8 of the 9 compounds demonstrated cross-reactivity with lipoic acid. One compound, 2-octynoic acid, was unique in both its quantitative structure-activity relationship analysis and reactivity. PBC patient sera demonstrated high Ig reactivity against 2-octynoic acid-PDC-E2 peptide. Not only does 2-octynoic acid have the potential to modify PDC-E2 in vivo but importantly it was/is widely used in the environment including perfumes, lipstick, and many common food flavorings.  相似文献   

7.
Primary biliary cirrhosis (PBC) is a chronic autoimmune liver disease that includes the presence of lymphoid infiltrates in portal tracts, high titer autoantibodies against pyruvate dehydrogenase-E2 (PDH-E2) and branched chain ketoacid dehydrogenase-E2 (BCKD-E2), and biliary tract destruction. The mechanism by which the autoimmune response is induced, the specificity of damage to the biliary epithelium, and the role of T cells in PBC are still unknown. To address these issues, we have taken advantage of a mouse mAb, coined C355.1, and studied its reactivity against a panel of liver tissue from normal subjects as well as a panel of liver specimens from patients with PBC, progressive sclerosing cholangitis, and chronic active hepatitis (CAH). C355.1, much like human autoantibodies to PDH-E2, reacts exclusively by immunoblotting with PDH-E2, binds to the inner lipoyl domain of the protein, and inhibits PDH-E2 activity in vitro. In addition, we have also attempted to develop cloned T cell lines that react with PDH-E2 and/or BCKD-E2 using liver biopsies from patients with PBC, compared with CAH. Although monoclonal C355.1 produced typical mitochondrial fluorescence on sections of normal liver, pancreas, lung, heart, thyroid, and kidney, it produced a distinct and intense reactivity when used to stain the bile ducts of patients with PBC. Nine of 13 PBC liver biopsies studied herein contained bile ducts on light microscopy, all of which reacted intensely at a 1:100 culture supernatant dilution of monoclonal C355.1. In contrast, although bile ducts of liver specimens from normals, CAH, and progressive sclerosing cholangitis also reacted with C355.1, such reactivity was exclusively mitochondrial and readily detectable only at a dilution of 1:2. More importantly, we generated CD4+, CD8-, alpha beta TCR+ cloned T cell lines from patients with PBC, but not from CAH, that produced IL-2 specifically in response to PDH-E2 or BCKD-E2.  相似文献   

8.
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by autoantibodies reactive with the pyruvate dehydrogenase complex. A conformational epitope has been mapped to aa 91-227 within the inner lipoyl domain of the E2 subunit (pyruvate dehydrogenase complex E2 (PDC-E2)). We have used phage display to further localize this epitope. A random heptapeptide library was screened using IgG from two patients with PBC, with negative selection using pooled normal IgG. Phage that contained peptide inserts (phagotopes) selected using PBC sera differed from those selected using IgG from patients with RA or polychondritis. Two motifs occurred only among the PBC-selected phagotopes; these were MH (13 sequences, 16 phagotopes) and FV (FVEHTRW, FVEIYSP, FVLPWRI). The phagotopes selected were tested for reactivity with anti-PDC-E2 affinity purified from four patients with PBC. Phagotopes that contained 1 of 15 different peptide sequences were reactive with one or more of these four anti-PDC-E2 preparations, whereas phagotopes that contained 1of the remaining 28 sequences were negative. The peptides (FVLPWRI, MHLNTPP, MHLTQSP) encoded by three phagotopes that were strongly reactive with all four preparations of anti-PDC-E2 were synthesized. Each of the selected peptides, but not an irrelevant peptide, inhibited the reactivity by ELISA of PBC serum with recombinant PDC-E2 and reduced the inhibition of the enzyme activity of PDC by a PBC serum. The peptide sequences, along with the known NMR structure of the inner lipoyl domain of PDC-E2, allow the prediction of nonsequential residues 131HM132 and 178FEV180 that contribute to a conformational epitope.  相似文献   

9.
10.
Although significant advances have been made in dissecting the effector mechanisms in autoimmunity, the major stumbling block remains defining the etiological events that precede disease. Primary biliary cirrhosis (PBC) illustrates this paradigm because of its high degree of heritability, its female predominance, and its extraordinarily specific and defined immune response and target destruction. In PBC, the major autoantigens belong to E2 components of the 2-oxo-acid dehydrogenase family of mitochondrially located enzymes that share a lipoylated peptide sequence that is the immunodominant target. Our previous work has demonstrated that synthetic mimics of the lipoate molecule such as 6-bromohexoanate demonstrate a high degree of reactivity with PBC sera prompted us to immunize groups of guinea pigs with 6-bromohexanoate conjugated to BSA. In this study, we provide serologic and immunohistochemical evidence that such immunized guinea pigs not only develop antimitochondrial autoantibody responses similar to human PBC, but also develop autoimmune cholangitis after 18 mo. Xenobiotic-immunized guinea pigs are the first induced model of PBC and suggest an etiology that has implications for the causation of other human autoimmune diseases. The data also reflect the likelihood that, in PBC, the multilineage antimitochondrial response is a pathogenic mechanism and that loss of tolerance and subsequent development of biliary lesions depends on either modification of the host mitochondrial Ag or a similar breakdown due to molecular mimicry.  相似文献   

11.
The molecular mechanisms that contribute to autoimmunity remain poorly defined. While inflammation is considered to be one of the major checkpoints in autoimmune disease progression, very little is known about the initiating events that trigger inflammation. We have studied transgenic mice expressing the prosurvival molecule protein kinase B/Akt under control of a T cell-specific CD2 promoter. In this study, we demonstrate that aged mice develop lymphadenopathy and splenomegaly that result from an accumulation of CD4, CD8, and unexpectedly B cells. An increased proportion of T cells express activation markers, while T cell proliferative responses remain normal. B cells are hyperproliferative in response to anti-IgM F(ab')(2) and anti-CD40, and increased IgA and IgG2a were found in the sera. In addition, a profound multiorgan lymphocytic infiltration is observed, and T cells from these mice display a defect in Fas-mediated apoptosis, which may be the mechanism underlying this phenotype. Therefore, T cell expression of active protein kinase B can alter T cell homeostasis, indirectly influence B cell homeostasis, and promote inflammation in vivo.  相似文献   

12.
The generation of human monoclonal autoantibodies is critical for understanding humoral immune response in autoimmunity. In this study, Ig gene repertoire cloning was performed from a regional lymph node of a patient with idiopathic dilated cardiomyopathy (IDCM), and the resulting combinatorial IgG library was screened with bovine branched chain alpha-oxo acid dehydrogenase-E-2 (BCOADC-E2), one of the autoantigens in IDCM. After three rounds of affinity selection, we isolated three human recombinant IgG Fab molecules, named BC1, BC2 and BC3, that specifically react with BCOADC-E2 by ELISA. Interestingly, BC2 showed weak cross-reactivity to pyruvate dehydrogenase complex-E2 (PDC-E2), another mitochondrial autoantigen found in primary biliary cirrhosis (PBC), and their kappa light chain genes have 95% homology with a light chain of the human anti-DNA antibody. Although the exact pathogenic effect of anti-BCOADC-E2 autoantibodies is still unknown in IDCM, the potential binding specificity and limited light chain gene usage of our recombinant IgG molecules may shed light on the initial mechanism as to how autoantibodies start developing in IDCM.  相似文献   

13.
Autoimmune diseases are known to be induced in some donor-recipient combinations of mice undergoing the graft-vs-host reaction (GVHR). In this paper, we report on the development of primary biliary cirrhosis (PBC)-like hepatic lesions and also on pancreatic insulitis in (B6 x bm12)F1 mice injected with B6 CD4+ T cells. At the sites of these lesions, cellular infiltration around ductal structure was observed. Immunohistochemical studies revealed that both CD4+ and CD8+ T cells were present in the lesions of the liver and pancreas. To clarify the role of the CD8+ T cells, which were probably of host origin, we used a mAb against the Lyt-2 molecule. Both the PBC-like hepatic lesions and pancreatic insulitis were exacerbated by eliminating CD8+ T cells from mice with MHC class II GVHR. Also, autoantibodies against the pyruvate dehydrogenase-E2 component, which has been recently found to contain an immunodominant site (autoepitope) for B cell reactivity in patients with PBC, were detected in the sera of these mice by ELISA and their presence was confirmed by immunoblotting procedures. Our findings suggest that similar mechanisms as in GVHR caused by MHC class II disparity are active in the development of PBC. It should also be noted that, in addition to the hepatic lesions, insulitis closely resembling that seen in the nonobese diabetic mouse was induced in our experimental system. The results suggest that our model provides a unique opportunity to study organ-specific autoimmune diseases. Because the effector in our experimental system was defined to be CD4+ T cells responding to Iabm12 Ag, our findings support the hypothesis that an excessive immune response directed against Ia Ag can produce autoimmune disease.  相似文献   

14.
During inflammation, chemokines are conductors of lymphocyte trafficking. The chemokine CXCL10 is expressed early after virus infection. In a virus-induced mouse model for type 1 diabetes, CXCL10 blockade abrogated disease by interfering with trafficking of autoaggressive lymphocytes to the pancreas. We have generated transgenic rat insulin promotor (RIP)-CXCL10 mice expressing CXCL10 in the beta cells of the islets of Langerhans to evaluate how bystander inflammation influences autoimmunity. RIP-CXCL10 mice have islet infiltrations by mononuclear cells and limited impairment of beta cell function, but not spontaneous diabetes. RIP-CXCL10 mice crossed to RIP-nucleoprotein (NP) mice expressing the NP of the lymphocytic choriomeningitis virus in the beta cells had massively accelerated type 1 diabetes after lymphocytic choriomeningitis virus infection. Mechanistically, we found a drastic increase in NP-specific, autoaggressive CD8 T cells in the pancreas after infection. In situ staining with H-2D(b)(NP(396)) tetramers revealed islet infiltration by NP-specific CD8 T cells in RIP-NP-CXCL10 mice early after infection. Our results indicate that CXCL10 expression accelerates the autoimmune process by enhancing the migration of Ag-specific lymphocytes to their target site.  相似文献   

15.
Invariant natural killer T (iNKT) cells play complex roles in bridging innate and adaptive immunity by engaging with glycolipid antigens presented by CD1d. Our earlier work suggested that iNKT cells were involved in the initiation of the original loss of tolerance in primary biliary cirrhosis (PBC). To address this issue in more detail and, in particular, to focus on whether iNKT cells activated by a Th2-biasing agonist (2s,3s,4r)-1-O-(α-D-galactopyranosyl)-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH), can influence the development of PBC in a xenobiotic-induced PBC murine model. Groups of mice were treated with either OCH or, as a control, α-galactosylceramide (α-GalCer) and thence serially followed for cytokine production, markers of T cell activation, liver histopathology and anti-mitochondrial antibody responses. Further, additional groups of CD1d deleted mice were similarly studied. Our data indicate that administration of OCH has a dramatic influence with exacerbation of portal inflammation and hepatic fibrosis similar to mice treated with α-GalCer. Further, iNKT cell deficient CD1d knockout mice have decreased inflammatory portal cell infiltrates and reduced anti-mitochondrial antibody responses. We submit that activation of iNKT cells can occur via overlapping and/or promiscuous pathways and highlight the critical role of innate immunity in the natural history of autoimmune cholangitis. These data have implications for humans with PBC and emphasize that therapeutic strategies must focus not only on suppressing adaptive responses, but also innate immunity.  相似文献   

16.
Autoantibodies directed to intracellular antigens are serological hallmarks of systemic rheumatic diseases. Identification of circulating autoantibodies is helpful in establishing the correct diagnosis, indicating the prognosis and providing a guide to treatment and follow-up. Some autoantibodies are included in diagnostic and classification criteria for diseases such as anti-Sm antigen and anti-double-stranded DNA antibodies in systemic lupus erythematosus, anti-U1 nuclear ribonucleoprotein antibodies in mixed connective tissue disease, and anti-SS-A/Ro and anti-SS-B/La antibodies in Sjögren's syndrome. Over the past 30 years, the identification of new autoantibody systems was advanced by the initiation or adaptation of novel techniques such as double immunodiffusion to detect antibodies to saline-soluble nuclear antigens, extraction-reconstitution and ELISA techniques to detect histone and chromatin antibodies, immunoblotting and immunoprecipitation to detect a wide range of antibodies directed against naturally occurring and recombinant proteins. These techniques have been made possible by advances in cellular and molecular biology and in turn, the sera from index patients have been important reagents to identify novel intracellular macromolecules. This paper will focus on the clinical relevance of several autoantibody systems described by Tan and his colleagues over the past 30 years.Abbreviations ANA antinuclear antibody - CENPs centromere proteins - CTD connective tissue disease - DIA drug-induced autoimmunity - DIL drug-induced lupus - HIV human immunodeficiency virus - IIF indirect immunofluorescence - JCA juvenile chronic arthritis - MCTD mixed connective tissue disease - MSA mitotic spindle apparatus - NOR nucleolar organizer - NuMA nuclear mitosis antigen - PBC primary biliary cirrhosis - PCNA proliferating cell nuclear antigen - PM polymyositis - RA rheumatoid arthritis - RNP ribonucleoprotein - SLE systemic lupus erythematosus - SS Sjögren's syndrome - SSc systemic sclerosis - UCTD undifferentiated connective tissue disease  相似文献   

17.
Mitochondrial autoantibodies are characteristic of the disease primary biliary cirrhosis (PBC), but the immunoreactive mitochondrial antigens have not been defined. We used a rat liver cDNA library in lambda gt 11-Amp3 to clone a 1370-base pair insert that coded for a polypeptide reactive with PBC sera. This insert was subcloned for expression into pBTA224, a plasmid vector in the same reading frame as lambda-Amp3. A positive clone, designated pRMIT, that expressed a fused polypeptide of 160 kd, was recognized by 25 of 25 sera from patients with PBC and none of 96 sera from normal persons or patients with systemic lupus erythematosus, rheumatoid arthritis, or chronic active hepatitis. This fused polypeptide was shown to correspond with the 70 kd mitochondrial autoantigen by several experiments. First, lysates of pRMIT in J101 absorbed out the 70 kd reactivity of PBC sera when probed against fractionated placental mitochondria. Second, affinity-purified antisera reactive with the fused polypeptide also reacted with the 70 kd mitochondrial antigen. Third, such affinity-purified antisera produced the characteristic anti-mitochondrial pattern of immunofluorescence on tissue sections. Finally, immunization of BALB/c mice with the fused polypeptide elicited antibodies to mitochondria. These murine antibodies reacted with the 70 kd mitochondrial protein and also produced typical mitochondrial immunofluorescence on tissue sections. The nucleotide and amino acid sequence of the recombinant protein, which encodes for approximately a 48 kd protein, showed no significant homologies with known proteins, and there were no homologies with mitochondrial genomic DNA. The availability of a recombinant form of the 70 kd mitochondrial autoantigen will allow several definitive questions to be addressed in PBC, including identification of B cell epitopes, T cell recognition, and a model of PBC in mice.  相似文献   

18.
Primary biliary cirrhosis is characterized by autoreactive T cells specific for the mitochondrial Ag PDC-E2(163-176). We studied the ability of eight T cell clones (TCC) specific for PDC-E2(163-176) to proliferate or become anergic in the presence of costimulation signals. TCC were stimulated with either human PDC-E2(163-176), an Escherichia coli 2-oxoglutarate dehydrogenase mimic (OGDC-E2(34-47)), or analogs with amino acid substitutions using HLA-matched allogeneic PBMC or mouse L-DR53 fibroblasts as APC. Based on their differential responses to these peptides (human PDC-E2(163-176), E. coli OGDC-E2(34-47)) in the different APC systems, TCC were classified as costimulation dependent or independent. Only costimulation-dependent TCC could become anergic. TCC with costimulation-dependent responses to OGDC-E2 become anergic to PDC-E2 when preincubated with mimic, even if costimulation is independent for PDC-E2(163-176). Anergic TCC produced IL-10. One selected TCC could not become anergic after preincubation with PDC-E2(163-176)-pulsed L-DR53 but became anergic using L-DR53 pulsed with PDC-E2 peptide analogs with a substitution at a critical TCR binding site. TCC that only respond to peptide-pulsed PBMC, but not L-DR53, proliferate with peptide-pulsed CD80/CD86-transfected L-DR53; however, anergy was not induced with peptide-pulsed L-DR53 transfected with only CD80 or CD86. These data highlight that costimulation plays a dominant role in maintaining peripheral tolerance to PBC-specific Ags. They further suggest that, under specific circumstances, molecular mimicry of an autoantigen may restore rather than break peripheral tolerance.  相似文献   

19.
Chronic graft-versus-host disease (GVHD) induced in (C57BL/6 × DBA/2) F1 (BDF1) mice by the injection of DBA/2 mouse spleen cells represents histopathological changes associated with systemic lupus erythematosus (SLE), primary biliary cirrhosis (PBC) and Sjogren's syndrome (SS), as indicated by glomerulonephritis, lymphocyte infiltration into the periportal area of the liver and salivary glands. We determined the therapeutic effect of hepatocyte growth factor (HGF) gene transfection on lupus using this chronic GVHD model. Chronic GVHD mice were injected in the gluteal muscle with either HVJ liposomes containing 8 μg of the human HGF expression vector (HGF-HVJ liposomes) or mock vector (untreated control). Gene transfer was repeated at 2-week intervals during 12 weeks. HGF gene transfection effectively prevented the proteinuria and histopathological changes associated with glomerulonephritis. While liver and salivary gland sections from untreated GVHD mice showed prominent PBC- and SS-like changes, HGF gene transfection reduced these histopathological changes. HGF gene transfection greatly reduced the number of splenic B cells, host B cell major histocompatibility complex class II expression, and serum levels of IgG and anti-DNA antibodies. IL-4 mRNA expression in the spleen, liver, and kidneys was significantly decreased by HGF gene transfection. CD28 expression on DBA/2 CD4+ T cells was decreased by the addition of recombinant HGF in vitro. Furthermore, IL-4 production by DBA/2 CD4+ T cells stimulated by irradiated BDF1 dendritic cells was significantly inhibited by the addition of recombinant HGF in vitro. These results suggest that HGF gene transfection inhibited T helper 2 immune responses and reduced lupus nephritis, autoimmune sialoadenitis, and cholangitis in chronic GVHD mice. HGF may represent a novel strategy for the treatment of SLE, SS and PBC.  相似文献   

20.
There is growing evidence that the onset of autoimmune disorders can be linked to the inefficient removal of apoptotic cells. Since defects in the elimination of apoptotic cells lead to secondary necrosis and subsequent release of intracellular components, this might explain the generation of autoantibodies against intracellular antigens. Accordingly, we wanted to investigate, whether antibodies from patients with the autoimmune liver disease primary biliary cirrhosis (PBC) recognize self-proteins generated and released during apoptosis. Using Western blot analyses we could detect intracellular antigens with serum IgG from PBC patients but not with serum IgG from healthy donors in lysates of Jurkat T-leukemia, HepG2 hepatoma, and HT-29 colon-carcinoma cells. Interestingly, PBC serum IgG also recognized caspase substrates in cells undergoing apoptosis induced by staurosporine or TRAIL (TNF-related apoptosis inducing ligand). In addition to intracellular antigens, serum IgG from PBC patients detected caspase-dependent antigens in the supernatants of apoptotic (secondary necrotic) cells and antigens on the surface of apoptotic Jurkat cells. Among the caspase substrates recognized by PBC serum IgG we could identify the components PDC-E2 and -E1β of the known autoantigen PDC (pyruvate dehydrogenase complex). Thus, caspase-mediated processing of intracellular proteins might generate de novo autoantigens that upon release contribute to the generation of autoantibodies and autoimmune diseases as PBC. Christoph Peter Berg and Gerburg Maria Stein contributed equally to this paper and share first authorship. Sebastian Wesselberg and Kirsten Lauber share equal senior authorship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号