首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in the regulation of at mitochondrial NADP-isocitrate dehydrogenase (NADP-ICDH) in a rat heart during have been analysed. Increase of enzyme activity in the cytosol and mitochondria of the heart ischemia was detected. Catalytic properties of the mitochondrial NADP-ICDH at norm and pathology have been compared on homogeneous enzyme preparations. Enzyme from the normoxic and ischemic heart showed the same electrophoretical mobility and molecular mass. Enzyme isolated from the ischemic heart mitochondria demonstrated higher activation energy and lower thermal stability. NADP-isocitrate dehydrogenase at the normoxic and ischemic conditions exhibited different Km for substrates and regulatory behaviour in relation to ATP, ADP, 2-oxoglutarate, citrate, malate, reduced and oxidised glutathione. The inhibitory effect of the Fe2+ and H2O2 mixture associated with the generation of hydroxyl radicals was lower in the ischemic enzyme. We hypothesise that the specific features of regulation behaviour of NADP-ICDH from the ischemic tissues permits the enzyme to supply NADPH to the glutathione reductase/glutathione peroxidase system.  相似文献   

2.
The regulatory role of divalent metal cations in the NADP-linked isocitrate dehydrogenase (EC 1.1.1.42) from porcine heart was analysed. Saturation curves with respect to the substrate threo-Ds-isocitrate complexed with the metals including manganous, cadmium, cobaltous and zinc ions showed sigmoid relationships characteristic of allosteric enzymes. The Hill's interaction coefficients were 1.90, 1.75, 1.28 and 1.12, respectively. Saturation kinetics of the substrate-metal complexes including magnesium, ferrous and nickel ions exhibited normal hyperbolic curves with Hill's coefficients of 1. The ionic radii of metal cations were closely correlated with the maximal velocity, the enzyme affinity and the Hill's n values for the substrate-metal complexes. Cooperative interactions of metal-substrate complexes with NADP-isocitrate dehydrogenase are discussed in relation to the sites of the enzyme for the binding of the metal-substrate complex.  相似文献   

3.
Effect of aluminum on the NADPH supply and glutathione regeneration in mitochondria was analyzed. Reduced glutathione acted as a principal scavenger of reactive oxygen species in mitochondria. Aluminum inhibited the regeneration of glutathione from the oxidized form, and the effect was due to the inhibition of NADP-isocitrate dehydrogenase the only enzyme supplying NADPH in mitochondria. In cytosol, aluminum inhibited the glutathione regeneration dependent on NADPH supply by malic enzyme and NADP-isocitrate dehydrogenase, but did not affect the glucose 6-phosphate dehydrogenase dependent glutathione formation. Aluminum can cause oxidative damage on cellular biological processes by inhibiting glutathione regeneration through the inhibition of NADPH supply in mitochondria, but only a little inhibitory effect on the glutathione generation in cytosol.  相似文献   

4.
Kinetic and regulatory properties of NADP-isocitrate dehydrogenase (NADP-IDH) and aspartate aminotransferase (AsAT) responsible for 2-oxoglutarate metabolism in the cytoplasm and mitochondria of rat liver were studied. Based on the subcellular location of these enzymes and their kinetic parameters (Km, Ksi) obtained with highly purified enzyme preparations, it is suggested that synthesis of 2-oxoglutarate should be mainly determined by cytoplasmic NADP-IDH (86% of the total activity in the cell), whereas its utilization should depend on cytoplasmic AsAT (78% of the total activity). AsAT from the rat liver was specified by substrate inhibition and also by changes in the enzyme affinity for the substrates under the influence of some intermediates of the tricarboxylic acid cycle: isocitrate, succinate, fumarate, and citrate. Key intermediates of nitrogen metabolism (glutamate, glutamine, and aspartate) are involved in the regulation of NADP-IDH and AsAT. These enzymes are regulated oppositely, and the catalytic activity of one enzyme can be stimulated concurrently with a decrease in the activity of the other. Obviously, carbon and nitrogen metabolism in the rat liver can be controlled through redistribution of 2-oxoglutarate between different metabolic processes via regulatory mechanisms influencing differently located forms of NADP-IDH and AsAT.  相似文献   

5.
Treatment of E. coli extract with iron/ascorbate preferentially inactivated NADP-isocitrate dehydrogenase without affecting glucose-6-phosphate dehydrogenase. NADP-Isocitrate dehydrogenase required divalent metals such as Mg2+, Mn2+ or Fe2+ ion. Iron/ascorbate-dependent inactivation of the enzyme was accompanied with the protein fragmentation as judged by SDS-PAGE. Catalase protecting the enzyme from the inactivation suggests that hydroxyl radical is responsible for the inactivation with fragmentation. TOF-MS analysis showed that molecular masses of the enzyme fragments were 36 and 12, and 33 and 14 kDa as minor components. Based on the amino acid sequence analyses of the fragments, cleavage sites of the enzyme were identified as Asp307-Tyr308 and Ala282-Asp283, which are presumed to be the metal-binding sites. Ferrous ion bound to the metal-binding sites of the E. coli NADP-isocitrate dehydrogenase may generate superoxide radical that forms hydrogen peroxide and further hydroxyl radical, causing inactivation with peptide cleavage of the enzyme. Oxidative inactivation of NADP-isocitrate dehydrogenase without affecting glucose 6-phosphate dehydrogenase shows only a little influence on the antioxidant activity supplying NADPH for glutathione regeneration, but may facilitate flux through the glyoxylate bypass as the biosynthetic pathway with the inhibition of the citric acid cycle under aerobic growth conditions of E. coli.  相似文献   

6.
Two NADP-isocitrate dehydrogenase isoenzymes designated as NADP-IDH1 and NADP-IDH2 (EC 1.1.1.42) were identified in pea (Pisum sativum) leaf extracts by diethylaminoethylcellulose chromatography. The predominant form was found to be NADP-IDH1 while NADP-IDH2 represented only about 4% of the total leaf enzyme activity. These enzymes share few common epitopes as NADP-IDH2 was poorly recognized by the specific polyclonal antibodies raised against NADP-IDH1, and as a consequence NADP-IDH2 does not result from a post-translational modification of NADP-IDH1. Subcellular fractionation and isolation of chloroplasts through a Percoll gradient, followed by the identification of the associated enzymes, showed that NADP-IDH1 is restricted to the cytosol and NADP-IDH2 to the chloroplasts. Compared with the cytosolic isoenzyme, NADP-IDH2 was more thermolabile and exhibited a lower optimum pH. The data reported in this paper constitute the first report that the chloroplastic NADP-IDH and the cytosolic NADP-IDH are two distinct isoenzymes. The possible functions of the two isoenzymes are discussed.Abbreviations BSA bovine serum albumin - DEAE diethylaminoethyl - NADP-IDH NADP-isocitrate dehydrogenase - NADP-IDH1 cytosolic NADP-IDH - NADP-IDH2 chloroplastic NADP-IDH  相似文献   

7.
The intensity of free radical processes and the regulation of NADP-isocitrate dehydrogenase (EC 1.1.1.42; NADP-IDH) activity have been studied in the cytoplasmic fraction of normal and ischemized rat myocardium. Chemiluminescence parameters, such as the light sum (S) of slow flash and the tangent of the kinetic curve slope angle (tan1), which characterize the intensity of free radical processes, were increased in ischemia 2.1- and 20.0-fold, respectively. The slow flash intensity (Imax) was increased 22-fold. The contents of lipid peroxidation products–diene conjugates and malonic dialdehyde–were increased 11.9- and 4.7-fold, respectively, suggesting pronounced oxidative stress. Using homogenous enzyme preparations of NADP-IDH isolated from the normal and experimentally ischemized rat myocardium, a number of catalytic properties of the enzyme were characterized for normal and pathologic conditions. NADP-IDH from the normal and ischemized myocardium had the same electrophoretic mobility and was regulated similarly by Fe2+, Cu2+, Zn2+, and also with succinate and fumarate. However, under normal and pathologic conditions NADP-IDH was different in the affinity for substrates and in the sensitivity to inhibitory effects of hydrogen peroxide, reduced glutathione, and of Ca2+. The degree of synergy in the enzyme inhibition with Fe2+ and H2O2 was less pronounced in ischemia. The inhibitory effect of the reaction product 2-oxoglutarate was higher under normal conditions than in ischemia (the K i values were 0.22 and 0.75 mM, respectively). The specific features of the NADP-IDH regulation in ischemia are suggested to promote the stimulation of the enzyme functioning during increased level of free radical processes, and this seems to be important for NADPH supplying for the glutathione reductase/glutathione peroxidase antioxidant system of cardiomyocytes.  相似文献   

8.
9.
Purified porcine heart lactate dehydrogenase was inactivated and partially unfolded with p-chloromercuribenzoate (pCMB). With the increase of pCMB/enzyme ratio the enzyme was gradually inhibited till almost completely inactivated at the pCMB/enzyme ratio of 20 : 1. Native polyacrylamide gel electrophoresis showed that with the increase of pCMB/enzyme ratio the bands of native enzyme decreased till completely vanished. Meanwhile inactive multiple bands emerged and became thicker, which implied that lactate dehydrogenase became loose. The conformational changes of the enzyme molecule modified with pCMB were followed using fluorescence emission, ultraviolet difference, and circular dichroism (CD) spectra. Increasing pCMB concentration resulted in the decrease of fluorescence emission intensity. The ultraviolet difference spectra of the enzyme modified with pCMB exhibited an increasing absorbance in the vicinity of 240 nm with the increasing concentration of the inhibitor. The changes of the fluorescence and ultraviolet difference spectra reflected the conformational changes of the enzyme. The CD spectrum changes of the enzyme showed that its secondary structure changed as well. These results suggest that pCMB not only inhibits this enzyme but also influences its conformation (partial unfolding).  相似文献   

10.
11.
Abstract During adaptation of Acinetobacter calcoaceticus to growth on acetate the specific activity of NADP-isocitrate dehydrogenase increased. This response is unique, as in other bacteria grown under the same conditions the activity of the enzyme decreases as a result of covalent phosphorylation. Moreover, A. calcoaceticus is also unusual in containing two distinct isoenzymes of NADP-isocitrate dehydrogenase. It has here been shown that the adaptation of A. calcoaceticus to acetate is accompanied by an increase in the relative proportion of the larger, allosteric, isoenzyme with a concomitant decrease in the level of the smaller, non-allosteric, isoenzyme.  相似文献   

12.
13.
A single residue of the NAD(H)-dependent lactate dehydrogenase (LDH) from Bacillus stearothermophilus has been changed in order to decrease substrate inhibition. The conserved aspartic acid residue at position 52 was replaced by glutamate using site-directed mutagenesis. The effect on substrate inhibition was measured. In the glutamate-52 mutant substrate inhibition is decreased twofold.  相似文献   

14.
A lactate dehydrogenase inhibitor protein is isolated from rabbit skeletal muscle crude mitochondrial fraction. The molecular weight of the inhibitor is approximately 20,000 as determined by size exclusion HPLC. The inhibitor isoelectricpH is 5.3 as determined by agarose or polyacrylamide gel isoelectric focusing. The amino acid composition of the inhibitor is given. The presence of the inhibitor gives an acidic characteristic to the alkaline M4 lactate dehydrogenase isozyme and the lactate dehydrogenase-inhibitor complex is more stable than the enzyme alone.  相似文献   

15.
Mitochondrial malate dehydrogenase (mMDH) shows a complex dependence upon ionic environment that includes kinetic and structural effects. We measured mMDH activity in several buffers (phosphate, MOPS, and MES) at pH 6.5 and 7.5, and in the presence of a number of anions, at highly diluted enzyme concentrations where mMDH showed significant loss of activity. Under these conditions, mMDH activity shows a non-linear dependence on enzyme concentration, in agreement with the existence of a dimer–monomer equilibrium, where only the dimeric form is active. According to this hypothesis, the dissociation constant of mMDH dimer has been determined to be 5.4 nM in the MES buffer at pH 6.5. Either the presence of a small anion like phosphate, or an increase of the pH from 6.5 to 7.5 shifts the equilibrium in favor of the dimeric form with the two effects appearing to be additive. To extend the study, we analysed the effect of a number of anions on the mMDH activity in 50 mM MOPS buffer at pH 7.5. All the anions had a dual effect: at low concentrations, they increased the activity of mMDH, while at high concentrations, they inhibited it. A more accurate analysis of the data revealed that the activation capacity of all the anions tested was similar, although they differed in their inhibitory influence. To show these differences more clearly, the experiment was repeated in 50 mM phosphate buffer at pH 7.5, under conditions where almost all activations were due to the buffer. The analysis of the results obtained under these conditions revealed the following sequence of inhibition potency: phosphate相似文献   

16.
Chloroplastic NADP-isocitrate dehydrogenase isoenzyme (NADP-IDH2; EC 1.1.1.42) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by a procedure which included affinity chromatography on Red-Sepharose as the key step. The 70-kDa isoenzyme was found to be a dimer formed by 40-kDa subunits. Antibodies raised against a recombinant tobacco cytosolic NADP-IDH cross-reacted strongly with the cytosolic NADP-IDH1 and weakly with the NADP-IDH2 isoenzyme from this alga. NADPH and GTP were found to inhibit both isoenzymes, whereas intermediates of the tricarboxylic acid cycle, glycolysis or reductive pentose phosphate cycle had no significant effect. The simultaneous presence of isocitrate and Mn2+ protected NADP-IDH2 against thermal inactivation or inhibition by reagents specific for arginine or lysine.  相似文献   

17.
Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic bacteria usually are dimers. Using site-directed mutagenesis, we show here that a network of electrostatic interactions across the extra dimer-dimer interface in CaMDH is important for thermal stability and oligomeric integrity. Stability effects of single point mutations (E25Q, E25K, D56N, D56K) varied from −1.2°C to −26.8°C, and depended strongly on pH. Gel-filtration experiments indicated that the 26.8°C loss in stability observed for the D56K mutant at low pH was accompanied by a shift towards a lower oligomerization state.  相似文献   

18.
Abstract The monomethyl sulfate-degrading bacterium, Hyphomicrobium MS 223 , contains a NAD(P)-independent methanol dehydrogenase (EC 1.1.99.8) which was isolated and characterized. The enzyme was activated by ammonium ions, had an M r of 118000 and was composed of two subunits of identical M r. It showed a broad substrate specificity for primary alcohols and was able to oxidize secondary alcohols and several aliphatic aldehydes. The new competitive inhibitor acetaldehyde oxime inhibited aldehyde oxidation more strongly than alcohol oxidation.  相似文献   

19.
Two forms of homoserine dehydrogenase exist in the leaves of both barley and pea; one has a large molecular weight and is inhibited by threonine, the other is of smaller molecular weight and insensitive to threonine but inhibited by cysteine. The subcellular localisation of these enzymes has been examined. Both plants have 60–65% of the total homoserine dehydrogenase activity present in the chloroplast and this activity is inhibited by threonine. The low molecular weight, threonine-insensitive form is present in the cytoplasm. Total homoserine dehydrogenase activity from barley leaves showed progressive desensitisation towards threonine with age in a similar manner to that previously described for maize. It was shown that the effect was due to desensitisation of the chloroplast enzyme, and not to an increase in the insensitive cytoplasm enzyme. No corresponding desensitisation to threonine was detected in pea leaves. The different forms of homoserine dehydrogenase could be separated from pea leaves by chromatography on Blue Sepharose; the threonine-sensitive enzyme passed straight through and the threonine insensitive form was bound. A similar separation of the barley leaf isoenzymes was obtained using Matrex Gel Red A affinity columns; in this case however, the threonine-sensitive isoenzyme was bound. In both plants, the threonine insensitive isoenzyme was subject to greater inhibition by cysteine than was the threonine-sensitive isoenzyme.Abbreviation HSDH homoserine dehydrogenase  相似文献   

20.
Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号