首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The cell growth suppression activity of the retinoblastoma gene (RB) product Rb is considered to be regulated by phosphorylation, whereas no positive correlation has been demonstrated between the activity and the amount of Rb protein in numbers of cell types examined. Both the RB mRNA and the protein were dramatically induced during terminal differentiation of the mouse skeletal muscle cell line C2 and its transfectant C2SVTts11, which stably harbors the SV40 T antigen gene linked to an inducible promoter. They were gradually deinduced when the terminally differentiated C2SVTs11 myotubes reentered the cell cycle through the induction of the large T antigen. Thus, the accumulation of Rb protein is likely to be required for growth arrest during differentiation of at least these myogenic cells, which have low basal levels of the protein.  相似文献   

2.
A temperature-sensitive (ts) mutant of the BHK21 cell line derived from golden hamsters, tsBN462 has a mutation in the gene encoding the largest subunit of the TFIID complex, TAFII250/p230/CCG1, and arrests in the G1 phase at the nonpermissive temperature, 39.5°C. We found that tsBN462 cells underwent apoptosis following growth arrest at 39.5°C, suggesting a role for CCG1 as a repressor of apoptosis. By electron microscopic observation, tsBN462 cells at 39.5°C showed characteristic features of apoptosis. Apoptosis was not suppressed by expression of Bc1-2 or the adenovirus E1B 19 kDa protein. Cell death was suppressed completely by expression of wild-type CCG1 and partially by wild-type p53, a growth suppressor protein. Cell cycle arrest induced by p53 may help survival of tsBN462 cells at 39.5°C. Apoptosis was accelerated in SV40 large T antigen-transformed tsBN462 cells at 39.5°C where SV40 large T antigen formed a complex with p53, implying that the apoptosis of tsBN462 cells at 39.5°C occurred in a p53-independent manner. Our results suggest that CCG1/TAFII250 is required for the expression of factors regulating apoptosis.  相似文献   

3.
4.
Fetal tracheal occlusion (TO) has been reported to stimulate lung growth but decreases number and maturation of type II cells, effects that vary with gestational age and duration of TO. We examined effects of a novel method of TO (unipolar microcautery to seal the trachea) produced at 19.5-20 days (d) of gestation in fetal rats; fetuses were delivered at term, 22 d. Controls were sham operated and unoperated littermates. TO increased wet lung weight but not dry lung weight or lung DNA and protein. To evaluate further the effects of TO, we examined the cell cycle regulators, cyclins D1 and A, in fetal lungs. Cyclin D1 increased with TO (P < 0.005). TO also increased expression of the type I epithelial cell marker RTI40 (mRNA and protein). TO decreased mRNA for surfactant proteins (SP)-A and -C but did not affect protein levels of SP-A and -B and of RTII70, a type II epithelial cell marker. We conclude that TO by microcautery, even of short duration, has diverse pulmonary effects including stimulating increased levels of cyclin D1 with probable cell cycle progression, type I cell differentiation, and possibly inhibiting type II cell function.  相似文献   

5.
Mechanical forces generated in utero by repetitive breathing-like movements and by fluid distension are critical for normal lung development. A key component of lung development is the differentiation of alveolar type II epithelial cells, the major source of pulmonary surfactant. These cells also participate in fluid homeostasis in the alveolar lumen, host defense, and injury repair. In addition, distal lung parenchyma cells can be directly exposed to exaggerated stretch during mechanical ventilation after birth. However, the precise molecular and cellular mechanisms by which lung cells sense mechanical stimuli to influence lung development and to promote lung injury are not completely understood. Here, we provide a simple and high purity method to isolate type II cells and fibroblasts from rodent fetal lungs. Then, we describe an in vitro system, The Flexcell Strain Unit, to provide mechanical stimulation to fetal cells, simulating mechanical forces in fetal lung development or lung injury. This experimental system provides an excellent tool to investigate molecular and cellular mechanisms in fetal lung cells exposed to stretch. Using this approach, our laboratory has identified several receptors and signaling proteins that participate in mechanotransduction in fetal lung development and lung injury.  相似文献   

6.
Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung’s ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro–SP-B and pro–SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.  相似文献   

7.
Recent studies in fetal lung using immunological and molecular probes have revealed type I and type II cell phenotypic markers in primordial lung epithelial cells prior to the morphogenesis of these cell types. We have recently developed monoclonal antibodies specific for adult type I cells. To evaluate further the temporal appearance of the type I cell phenotype during alveolar epithelial cell ontogeny, we analyzed fetal lung development using one of our monoclonal antibodies (mAb VIII B2). The epitope recognized by mAb VIII B2 first appears in the canalicular stage of fetal lung development, at approx. embryonic day 19 (E19), in occasional, faintly stained tubules. Staining with this type I cell probe becomes more intense and more widespread with increasing gestational age, during which time the pattern of staining changes. Initially, all cells of the distal epithelial tubules are uniformly labelled along their apical and basolateral surfaces. As morphological differentiation of the alveolar epithelium proceeds, type I cell immunoreactivity appears to become restricted to the apical surface of the primitive type I cells in a pattern approaching that seen in the mature lung. We concurrently analyzed developing fetal lung with an antiserum to surfactant apoprotein-A (-SP-A). Consistent with the findings of others, labeling of SP-A was first detectable in scattered cuboidal cells at E18. Careful examination of the doublelabeled specimens suggested that some cells were reactive with both the VIII B2 and SP-A antibodies, particularly at E20. Confocal microscopic analysis of such sections from E20 lung confirmed this impression. Three populations of cells were detected: cells labeled only with -SP-A, cells labeled only with mAb VIII B2, and a smaller subset of cells labeled by both. We conclude that: (1) binding of mAb VIII B2 may be a marker of late (possibly terminal) type I cell differentiation; (2) it is likely to recognize a different epitope from another published type I cell mAb (SF-1), since mAb VIII B2 epitope appears at a much later developmental age; and (3) cells may co-express both type II (SP-A) and type I (mAb VIII B2 epitope) cell differentation antigens.  相似文献   

8.
9.
A cold-sensitive, G1-defective variant of CHO cells, clone cs4-D3, exhibits a reversible, cell-cycle-dependent change in morphology at the non-permissive temperature (33 °C). We have investigated the role of fibronectin in mediating shape change in these cells, and found them to be defective in synthesis and expression of this molecule and in cell surface/fibronectin interactions at 33 °C. Our results suggest that clone cs4-D3 will provide a valuable in vitro model for investigating the role of cell adhesion in growth control.  相似文献   

10.
Although the majority of mammalian cells in situ are terminally differentiated, most DNA repair studies have used proliferating cells. In an attempt to understand better the relationship between differentiation and DNA repair, we have used the murine 3T3-T proadipocyte cell line. In this model system, proliferating (stem) cells undergo growth arrest (GD cells) and subsequently terminally differentiate into adipocytes when exposed to media containing platelet-depleted human plasma. Pulsed-field gel electrophoresis was used to evaluate the induction and repair of DNA double-strand breaks (DSBs) after ionizing radiation. The levels of radiation-induced DSBs in GD and terminally differentiated cells were similar, but in both cases greater than those found in stem cells at each radiation dose tested (0 to 40 Gy); these differences appear to be due to growth arrest in G1 phase. DNA DSBs were repaired with biphasic kinetics for each cell type. For terminally differentiated cells 25% of DNA DSBs remained unrejoined compared with < 10% for GD and stem cells after a repair time of 4 h. These data indicate that terminal differentiation of 3T3-T cells is associated with a reduction in the repair of ionizing radiation-induced DNA DSBs.  相似文献   

11.
Oligohydramnios (OH) retards fetal lung growth by producing less lung distension than normal. To examine effects of decreased distension on fetal lung development, we produced OH in rats by puncture of uterus and fetal membranes at 16 days of gestation; fetuses were delivered at 21 or 22 days of gestation. Controls were position-matched littermates in the opposite uterine horn. OH lungs had lower weights and less DNA, protein, and water, but no differences in saturated phosphatidylcholine, surfactant proteins (SP)-A and -B, and mRNA for SP-A, -B, -C, and -D. To evaluate effects on epithelial differentiation, we used RTI(40) and RTII(70), proteins specific in lung to luminal surfaces of alveolar type I and II cells, respectively. At 22 days of gestation, OH lungs had less RTI(40) mRNA (P < 0.05) and protein (P < 0.001), but RTII(70) did not differ from controls. With OH, type I cells (in proportion to type II cells) covered less distal air space perimeter (P < 0.01). We conclude that OH, which retards lung growth, has little effect on surfactant and impedes formation of type I cells relative to type II cells.  相似文献   

12.
The regulation of intestinal cell proliferation, migration, and differentiation has been the subject of numerous studies. However, in human, progress in this field has been traditionally hampered by the lack of normal epithelial cell models. The aim of the present study was to define conditions in order to isolate, and more importantly to grow in a continuous manner, human small intestinal epithelial cells. A number of mechanical and/or enzymatic dissociation methods have been tested to isolate viable epithelial cells from the fetal small intestine. Cultured cells were characterized by indirect immunofluorescence and Western blot analysis. It was found that the use of thermolysin (50 μg/ml, 2–3 h at 37°C) can be advantageously applied to the isolation of viable epithelial cells free from contaminating fibroblasts when obtained from the 17- to 19-week fetal ileum. Furthermore, this procedure allowed the generation of continuously growing human intestinal epithelial cell cultures, which retain the ability to express specific cytokeratins as well as intestinal cell markers over a number of passages. This study shows that normal epithelial cell cultures can be relatively easily and reproducibly generated from the human fetal small intestine.  相似文献   

13.
Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in mouse) in a hypercalcaemic environment (∼1.7 in the fetus vs. ∼1.1–1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match growth and distension within the developing lung.  相似文献   

14.
15.
16.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen involved in normal and abnormal angiogenesis. VEGF mRNA and protein are abundant in distal epithelium of midtrimester human fetal lung. In the present study, we identified immunoreactivity for KDR, a major VEGF-specific receptor, in distal lung epithelial cells of human fetal lung tissue, suggesting a possible autocrine or paracrine regulatory role for VEGF in pulmonary epithelial cell growth and differentiation. Addition of exogenous VEGF to human fetal lung explants resulted in increased epithelium volume density and lumen volume density in the tissues, both morphometric parameters of tissue differentiation. Cellular proliferation demonstrated by bromodeoxyuridine uptake was prominent in distal airway epithelial cells and increased in the VEGF-treated explants. VEGF-treated explants also demonstrated increased surfactant protein (SP) A mRNA, SP-C mRNA, and SP-A protein levels compared with controls. However, SP-B mRNA levels were unaffected by VEGF treatment. [(3)H]choline incorporation into total phosphatidylcholine was increased by VEGF treatment, but incorporation into disaturated phosphatidylcholine was not affected by exogenous VEGF. Based on these observations, we conclude that VEGF may be an important autocrine growth factor for distal airway epithelial cells in the developing human lung.  相似文献   

17.
In vitrified solutions, ice can form during warming if the concentration of the cryoprotectant is insufficient. For the cryopreservation of cells, ice is innocuous when it remains outside the cell, but intracellular ice (ICI) is lethal. We tried to estimate the conditions in which ICI forms in vitrified mouse morulae during warming. The solutions for the experiments (EFS10–EFS50) contained 10–50% ethylene glycol plus Ficoll plus sucrose. When vitrified EFS20, EFS30, and EFS40 were kept at −80 °C, they remained transparent after 3 min, but turned opaque after 60 min (EFS20, EFS30) or 24 h (EFS40). Morulae were vitrified with EFS solutions after exposure for 30–120 s at 25 °C. They were warmed by various methods and survival was assessed in culture. After rapid warming (control), survival was high with EFS30 (79–93%) and EFS40 (96–99%). After slow warming, survival decreased with both EFS30 (48–62%) and EFS40 (44–64%). This must be from the formation of ICI. To examine the temperature at which ICI formed during slow warming, vitrified embryos were kept at various sub-zero temperatures during warming. Survival with EFS30 and EFS40 decreased on keeping samples for 3 min at −80 (25–75%), −60 (7–49%), −40 (0–41%), or −20 °C (26–60%). When samples were kept at −80 °C for 24 h, the survival decreased to 0–14%. These results suggest that ICI forms at a wide range of temperatures including −80 and −20 °C, more likely between −60 and −40 °C, and the ice forms not only quickly but also slowly.  相似文献   

18.
The temperature-sensitive S. cerevisiae mutant alg1-1, defective in the N-glycosylation of proteins, shows a first cycle arrest at the non-permissive temperature of 36 °C. The cell number increases by 50% and the absorbance approximately doubles. The budding index of 0.4 at 26 °C drops to 0.15 and DNA synthesis quickly comes to a halt at 36 °C. When the temperature is lowered again, budding and DNA synthesis start after a lag of 2–3 h; α-factor prevents both these processes in cells of mating type a. In addition, cells arrested at 26 °C in G1 with α-factor also do not start budding at the non-permissive temperature after removal of α-factor. The results support recent findings obtained with tunicamycin and suggest that at least one glycoprotein is required for G1-S phase transition in yeast.  相似文献   

19.
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been reported to stimulate lung maturity, alveolar type II cell differentiation, and pulmonary surfactant synthesis in rat lung. We hypothesized that 1,25(OH)(2)D(3) stimulates expression of surfactant protein-A (SP-A), SP-B, and SP-C in human fetal lung and type II cells. We found that immunoreactive vitamin D receptor was detectable in fetal lung tissue and type II cells only when incubated with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) significantly decreased SP-A mRNA in human fetal lung tissue but did not significantly decrease SP-A protein in the tissue. In type II cells, 1,25(OH)(2)D(3) alone had no significant effect on SP-A mRNA or protein levels but reduced SP-A mRNA and protein in a dose-dependent manner when the cells were incubated with cAMP. SP-A mRNA levels in NCI-H441 cells, a nonciliated bronchiolar epithelial (Clara) cell line, were decreased in a dose-dependent manner in the absence or presence of cAMP. 1,25(OH)(2)D(3) had no significant effect on SP-B mRNA levels in lung tissue but increased SP-B mRNA and protein levels in type II cells incubated in the absence or presence of cAMP. Expression of SP-C mRNA was unaffected by 1,25(OH)(2)D(3) in lung tissue incubated +/- cAMP. These results suggest that regulation of surfactant protein gene expression in human lung and type II cells by 1,25(OH)(2)D(3) is not coordinated; 1,25(OH)(2)D(3) decreases SP-A mRNA and protein levels in both fetal lung tissue and type II cells, increases SP-B mRNA and protein levels only in type II cells, and has no effect on SP-C mRNA levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号