首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mammalian hibernation is characterized by prolonged torpor bouts interspersed by brief arousal periods. Adequate antioxidant defenses are needed both to sustain cell viability over weeks of deep torpor and to defend against high rates of oxyradical formation associated with massive oxygen-based thermogenesis during arousal. The present study shows that up-regulation of peroxiredoxins contributes to antioxidant defense during torpor in thirteen-lined ground squirrels, Spermophilus tridecemlineatus. Expression levels of three isozymes of the 2-Cys peroxiredoxin (Prdx) family were quantified by Western blotting, the results showing 4.0- and 12.9-fold increases in Prdx1 protein in brown adipose tissue (BAT) and heart, respectively, during hibernation compared with euthermia. Comparable increases in Prdx2 were 2.4- and 3.7-fold whereas Prdx3 rose by 3.1-fold in heart of torpid animals. Total 2-Cys peroxiredoxin enzymatic activity also rose during hibernation by 1.5-fold in heart and 3.5-fold in BAT. Furthermore, RT-PCR showed that prdx2 mRNA levels increased by 1.7- and 3.7-fold in BAT and heart, respectively, during hibernation. A partial nucleotide sequence of prdx2 from ground squirrels was obtained by PCR amplification, the deduced amino acid sequence showing 96-97% identity with Prdx2 from other mammals. Some unique amino acid substitutions were identified that might contribute to stabilizing Prdx2 conformation at the near 0 degrees C body temperatures during torpor.  相似文献   

4.
5.
The 13-lined ground squirrel (Ictidomys tridecemlineatus) is capable of entering into extended periods of torpor during winter hibernation. The state of torpor represents a hypometabolic shift wherein the rate of oxygen consuming processes are strongly repressed in an effort to maintain cellular homeostasis as the availability of food energy becomes limited. We are interested in studying hibernation/torpor because of the robust state of tolerance to constrained oxygen delivery, oligemia, and hypothermia achieved by the tissues of hibernating mammals. The role of the serine/threonine kinase Akt (also known as PKB) has been examined in torpor in previous studies. However, this is the first study that examines the level of Akt phosphorylation in the liver during the two transition phases of the hibernation cycle: entrance into torpor, and the subsequent arousal from torpor. Our results indicate that Akt is activated in the squirrel liver by phosphorylation of two key residues (Thr308 and Ser473) during entrance into torpor and arousal from torpor. Moreover, we observed increased phosphorylation of key substrates of Akt during the two transition stages of torpor. Finally, this study reports the novel finding that PRAS40, a component of the TORC1 multi-protein complex and a potentially important modulator of metabolism, is regulated during torpor.  相似文献   

6.
1. Minute ventilation (VE) in the semifossorial ground squirrel (Spermophilus tridecemlineatus) increased with increased levels of hypoxia. 2. The increase in VE was brought about primarily by an increase in breathing frequency (f). There was no significant change in tidal volume (VT). 3. The PiO2 threshold for the ventilatory response to hypoxia and position of the ventilatory response curve in the ground squirrel were closer to the semifossorial echidna (Tachyglossus aculeatus) than the completely fossorial mole rate (Spalax ehrenbergi); both the ground squirrel and echidna had a higher PiO2 threshold than the mole rat. 4. The ventilatory response curve was shifted to the left in the mole rat. 5. These observations indicate that the mole rat is the least responsive to hypoxia of the three species.  相似文献   

7.
8.
Grossly visible sarcocysts were seen in the skeletal muscles of 1 of 12 13-lined ground squirrels, Spermophilus tridecemlineatus tridecemlineatus, collected in Nebraska. The tissue cyst wall was up to 5.0 microm thick and contained spikelike projections. Transmission electron microscopy of tissue cysts revealed they were similar to Sarcocystis campestris Cawthorn, Wobeser, and Gajadhar, 1983, previously known only from experimental infections in Richardson's ground squirrel Spermophilus richardsonii. Prominent electron-dense bodies were observed lining the microfilaments present in the spikelike projections of the sarcocyst wall. This is the first report of S. campestris in a natural intermediate host and the first report of this parasite outside of Saskatoon, Canada.  相似文献   

9.
Summary In the suprachiasmatic nucleus (NSC) of hibernating and non-hibernating ground squirrels, the distribution of serotonin-immunoreactive (5HT-IR) fibers was studied by the use of the peroxidase-antiperoxidase technique. The cytology of perikarya giving rise to these suprachiasmatic 5HT-IR fibers was investigated in the anterior raphe nuclei. Differences in the immunoreactivity of suprachiasmatic fibers between hibernating and non-hibernating ground squirrels were determined by digital image analysis. The cellular activity was determined densitometrically after RNA-staining in anterior raphe neurons and suprachiasmatic perikarya. Abundant 5HT-IR fibers were observed in the medial and ventromedial portions of the NSC. Frequently, the fibers were found in close contact with perikarya of suprachiasmatic neurons. The central portion of the nucleus and the surrounding hypothalamic areas contained only a few scattered 5HT-IR fibers. Inside the raphe nuclei, 5HT-IR fibers and perikarya formed a dense network. In hibernating ground squirrels, the immunoreactivity to serotonin was approximately 45% higher than in non-hibernating controls. This difference is in accordance with signs of higher neuronal activity (40% higher RNA-content, 20% larger cell nuclei) in 5HT-IR perikarya of the raphe nucleus and the persisting activity of the NSC during hibernation; the activity of other brain regions dropped conspicuously in torpid animals.Supported by the Deutsche Forschungsgemeinschaft (Nu 36/2-1)  相似文献   

10.
The kinetic properties of glucokinase (GLK) from the liver of active and hibernating ground squirrels Spermophilus undulatus have been studied. Entrance of ground squirrels into hibernation from their active state is accompanied by a sharp decrease in blood glucose (Glc) level (from 14 to 2.9 mM) and with a significant (7-fold) decrease of GLK activity in the liver cytoplasm. Preparations of native GLK practically devoid of other molecular forms of hexokinase were obtained from the liver of active and hibernating ground squirrels. The dependence of GLK activity upon Glc concentration for the enzyme from active ground squirrel liver showed a pronounced sigmoid character (Hill coefficient, h = 1.70 and S 0.5 = 6.23 mM; the experiments were conducted at 25°C in the presence of enzyme stabilizers, K+ and DTT). The same dependence of enzyme activity on Glc concentration was found for GLK from rat liver. However, on decreasing the temperature to 2°C (simulation of hibernation conditions), this dependency became almost hyperbolic (h = 1.16) and GLK affinity for substrate was reduced (S 0.5 = 23 mM). These parameters for hibernating ground squirrels (body temperature 5°C) at 25°C were found to be practically equal to the corresponding values obtained for GLK from the liver of active animals (h = 1.60, S 0.5 = 9.0 mM, respectively); at 2°C sigmoid character was less expressed and affinity for Glc was drastically decreased (h = 1.20, S 0.5 = 45 mM). The calculations of GLK activity in the liver of hibernating ground squirrels based on enzyme kinetic characteristics and seasonal changes in blood Glc concentrations have shown that GLK activity in the liver of hibernating ground squirrels is decreased about 5500-fold.  相似文献   

11.
Pyruvate dehydrogenase (PDH) is a vital regulatory enzyme that catalyzes the conversion of pyruvate into acetyl-CoA and connects anaerobic glycolysis to aerobic TCA cycle. Post-translational inhibition of PDH activity via three serine phosphorylation sites (pS232, pS293, and pS300) regulate the metabolic flux through the TCA cycle, decrease glucose utilization, and facilitate lipid metabolism during times of nutrient deprivation. As metabolic readjustment is necessary to survive hibernation, the purpose of this study was to explore the post-translational regulation of pyruvate dehydrogenase and the expression levels of four mitochondrial serine/threonine kinases (PDHKs), during torpor-arousal cycles in liver, heart, and skeletal muscle of 13-lined ground squirrels. A combination of Luminex multiplex technology and western immunoblotting were used to measure the protein expression levels of total PDH, three phosphorylation sites, S232, 293, 300, and the expression levels of the corresponding PDH kinases (PDHK1-4) during euthermic control, entrance, late torpor, and interbout arousal. Liver and heart showed strong inhibitory PDH regulation, indicating a possible decrease in glucose utilization and a possible preference for β-oxidation of fatty acids during periods of low temperature and starvation. On the contrary, skeletal muscle showed limited PDH regulation via phosphorylation, possibly due to alternate controls. Phosphorylation of PDH may play an important role in regulating aerobic and anaerobic metabolic responses during hibernation in the 13-lined ground squirrel.  相似文献   

12.
13.
Vigilance is a commonly studied antipredator phenomenon. However, little research has been conducted on the effects of visual obstruction coupled with a manipulation of the cost of performing vigilance behaviours. We tested the hypothesis that antipredator vigilance decreases as the cost of performing antipredator vigilance increases in free-ranging thirteen-lined ground squirrels. We presented adult ground squirrels with peanut butter within six rectangular Plexiglas boxes (opaque on all sides; clear on top) ranging in length from 15.2 to 91.4 cm. Squirrels repeatedly entered and withdrew from the boxes, to scan visually the surrounding area. As box length increased and, therefore, the cost of the vigilance behaviour increased, the ground squirrels increased their mean time within the box per entry and decreased their alertness per unit of trial time. Squirrels took longer to traverse the longer boxes, but their travel time into the boxes was significantly slower than their travel time out of the boxes. We interpreted this difference in travel time to indicate a behavioural conflict that occurred only when the squirrels entered the box (food versus vigilance) and did not exist once the squirrels had begun to exit from the box. The hypothesis that a decrease in ground squirrel antipredator vigilance would benefit the squirrels by decreasing their time exposed to predators (i.e. decreased trial duration, which was determined by the squirrels' behaviour), was not supported. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

14.
The total Ca-ATPase activity in the sarcoplasmic reticulum (SR) membrane fraction isolated from skeletal muscles of winter hibernating ground squirrel Spermophilus undulatus is 2.2-fold lower than in preparations obtained from summer active animals. This is connected in part with 10% decrease of the content of Ca-ATPase protein in SR membranes. However, the enzyme specific activity calculated with correction for its content in SR preparations is still 2-fold lower in hibernating animals. Analysis of the protein composition of SR membranes has shown that in addition to the decrease in Ca-ATPase content in hibernating animals, the amount of SR Ca-release channel (ryanodine receptor) is decreased 2-fold, content of Ca-binding proteins calsequestrin, sarcalumenin, and histidine-rich Ca-binding protein is decreased 3-4-fold, and the amount of proteins with molecular masses 55, 30, and 22 kD is significantly increased. Using the cross-linking agent cupric–phenanthroline, it was shown that in SR membranes of hibernating ground squirrels Ca-ATPase is present in a more aggregated state. The affinity of SR membranes to the hydrophilic fluorescent probe ANS is higher and the degree of excimerization of the hydrophobic probe pyrene is lower (especially for annular lipids) in preparations from hibernating than from summer active animals. The latter indicates an increase in the microviscosity of the lipid environment of Ca-ATPase during hibernation. We suggest that protein aggregation as well as the changes in protein composition and/or in properties of lipid bilayer SR membranes can result in the decrease of enzyme activity during hibernation.  相似文献   

15.
Temperature effects on the kinetic properties of phosphofructokinase (PFK) purified from skeletal muscle of the golden-mantled ground squirrel, Spermophilus lateralis, were examined at 37 degrees C and 5 degrees C, values characteristic of body temperatures in euthermia vs. hibernation. The enzyme showed reduced sensitivity to all activators at 5 degrees C, the K(a) values for AMP, ADP, NH(4) (+) and F2,6P(2) were 3-11-fold higher at 5 degrees C than at 37 degrees C. Inhibition by citrate was not affected whereas phosphoenolpyruvate, ATP and urea became more potent inhibitors at low temperature. While typically considered an activator of PFK activity, inorganic phosphate performed as an inhibitor at 5 degrees C. Decreasing temperature alone causes the actions of inorganic phosphate to change from activation to inhibition. We found that K(m) values for ATP remained constant while V(max) dropped significantly upon the addition of phosphate. Phosphate inhibition at 5 degrees C was noncompetitive with respect to ATP and the K(i) was 0.15 +/- 0.01 mm (n = 4). The results indicate that PFK is less likely to be activated in cold torpid muscle; PFK is less sensitive to changing adenylate levels at the low temperatures characteristic of torpor, and PFK is clearly much less sensitive to biosynthetic signals. All of these characteristics of hibernator PFK would serve to reduce glycolytic rate and help to preserve carbohydrate reserves during torpor.  相似文献   

16.
Summary Chromosomes were analyzed from two geographically isolated populations of Spermophilus richardsonii. The diploid chromosome number was 36 in S. r. richardonii (Montana population) and 34 in S. r. elegans (Wyoming-Colorado population). The richardsonii Karyotype differed from elegans by the presence of two pairs of acrocentric autosomes whereas the elegans Karyotype lacked acrocentric autosomes and had an extra pair of submetacentrics.A chromosomal polymorphism, produced by centric fusion, probably existed in the more primitive richardsonii population. After ancestral stock of the elegans population became geographically isolated, both populations of S. richardsonii evolved independently and developed different karyotypes derived from the original polymorphism. Although the karyotypes have evolved to a stage found in valid species, the populations may not have been separated long enough to attain reproductive isolation.This investigation was supported by a grant from the National Science Foundation (GB-503).  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号