首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
虫害诱导植物挥发物(HIPVs)对植食性昆虫的行为调控   总被引:3,自引:2,他引:1  
孙晓玲  高宇  陈宗懋 《昆虫知识》2012,49(6):1413-1422
虫害诱导植物挥发物(herbivore induced plant volatiles,HIPVs)具有植物种类、品种、生育期和部位的特异性,也具有植食性昆虫种类、虫龄、为害程度、为害方式和其他一些环境因子的特异性。由于其释放量明显大于健康植株,因此更易被天敌、害虫以及邻近的植物等所利用,从而调节植物、植食性昆虫与天敌三者之间的相互作用关系,增强植物在自然界的生存竞争能力。本文对HIPVs在植食性昆虫寄主定位行为中的作用、HIPVs对植食性昆虫的种群调控功能及其应用现状2个方面加以综述,并在展望中对目前研究中存在的一些问题进行了探讨。  相似文献   

3.
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management.  相似文献   

4.
Plants release volatiles in response to caterpillar feeding that attracts natural enemies of the herbivores, a tritrophic interaction which has been considered to be an indirect plant defence against herbivores. On the other hand, the caterpillar‐induced plant volatiles have been reported to either repel or attract conspecific adult herbivores. This work was undertaken to investigate the response of both herbivores and natural enemies to caterpillar‐induced plant volatiles in apple orchards. We sampled volatile compounds emitted from uninfested apple trees, and apple trees infested with generalist herbivore the pandemis leafroller moth, Pandemis pyrusana (Lepidoptera, Tortricidae) larvae using headspace collection and analysed by gas chromatography/mass spectrometry. Infested apple trees uniquely release six compounds (benzyl alcohol, phenylacetonitrile, phenylacetaldehyde, 2‐phenylethanol, indole and (E)‐nerolidol). These compounds were tested on two species of herbivores and one predator in apple orchards. Binary blends of phenylacetonitrile + acetic acid or 2‐phenylethanol + acetic acid attracted a large number of conspecific male and female adult herbivores. The response of pandemis leafroller to herbivore‐induced plant volatiles (HIPVs) was so pronounced that over one thousand and seven hundred conspecific male and female adult herbivores were caught in traps baited with HIPVs in three‐day trapping period. In addition, significantly higher number of male and female obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera, Tortricidae), was caught in traps baited a binary blend of 2‐phenylethanol + acetic acid, or a ternary blend contains 2‐phenylethanol and phenylacetonitrile + acetic acid. This result challenges the current paradigm hypothesized that HIPVs repel herbivores and question the indirect defensive function proposed for these compounds. On the other hand, a ternary blend of phenylacetonitrile and 2‐phenylethanol + acetic acid attracted the largest numbers of the general predator, the common green lacewing, Chrysoperla plorabunda. To our knowledge, this is the first record of the direct attraction of conspecific adult herbivores as well as a predator to the caterpillar‐induced plant volatiles in the field.  相似文献   

5.
虫害诱导的植物挥发物代谢调控机制研究进展   总被引:4,自引:0,他引:4  
穆丹  付建玉  刘守安  韩宝瑜 《生态学报》2010,30(15):4221-4233
长期受自然界的非生物/生物侵害,植物逐步形成了复杂的防御机制,为防御植食性昆虫的为害,植物释放虫害诱导产生的挥发性化合物(herbivore-induced plant volatiles,HIPVs)。HIPVs是植物-植食性昆虫-天敌三级营养关系之间协同进化的结果。HIPVs的化学组分因植物、植食性昆虫种类的不同而有差异。生态系统中,HIPVs可在植物与节肢动物、植物与微生物、虫害植物与邻近的健康植物、或同一植株的受害和未受害部位间起作用,介导防御性反应。HIPVs作为寄主定位信号,在吸引捕食性、寄生性天敌过程中起着重要作用。HIPVs还可以作为植物间信息交流的工具,启动植株的防御反应而增强抗虫性。不论从生态学还是经济学角度来看,HIPVs对于农林生态系中害虫综合治理策略的完善具有重要意义。前期的研究在虫害诱导植物防御的化学生态学方面奠定了良好基础,目前更多的研究转向阐述虫害诱导植物抗性的分子机制。为了深入了解HIPVs的代谢调控机制,主要从以下几个方面进行了综述。因为植食性昆虫取食造成的植物损伤是与昆虫口腔分泌物共同作用的结果,所以首先阐述口腔分泌物在防御反应中的作用。挥发物诱导素volicitin和β-葡萄糖苷酶作为口腔分泌物的组分,是产生HIPVs的激发子,通过调节伤信号诱发HIPVs的释放。接着阐述了信号转导途径对HIPVs释放的调节作用,并讨论了不同信号途径之间的交互作用。就HIPVs的代谢过程而言,其过程受信号转导途径(包括茉莉酸、水杨酸、乙烯、过氧化氢信号途径)的调控,其中茉莉酸信号途径是诱发HIPVs释放的重要途径。基于前人的研究,综述了HIPVs的主要代谢过程及其过程中关键酶类的调控作用。文中的HIPVs主要包括萜烯类化合物、绿叶挥发物和莽草酸途径产生的芳香族化合物,如水杨酸甲酯和吲哚等。作为化学信号分子,这些化合物中的一部分还能激活邻近植物防御基因的表达。萜烯合酶是各种萜烯类化合物合成的关键酶类,脂氧合酶、过氧化氢裂解酶也是绿叶挥发物代谢途径中的研究热点,而苯丙氨酸裂解酶和水杨酸羧基甲基转移酶分别是合成水杨酸及其衍生物水杨酸甲酯的关键酶类。这些酶类的基因在转录水平上调控着HIPVs代谢途径。最后展望了HIPVs的研究前景。  相似文献   

6.
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9..Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.  相似文献   

7.
Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants.  相似文献   

8.
The attractiveness of herbivore-induced plant volatiles (HIPVs) from a specific plant species to natural enemies has been well established. However, under natural conditions and polycultural agriculture systems, the interactions among trophic levels are thought to be more complex. For instance, complex mixtures of volatiles emitted from diverse host plant species infested by polyphagous herbivores might affect responses of natural enemies. In this study, we investigated whether a mixture of HIPVs emitted from herbivore-damaged multiple host plant species affect responses of a predatory bug. Therefore, we report (1) olfactory responses of the predatory bug (Orius strigicollis) to volatiles emitted from cotton bollworm (Helicoverpa armigera) first instar larvae-damaged multiple plant species (tomato, French bean and sweet corn), (2) chemical analyses of volatiles emitted from the three plant species exposed to different treatments and (3) olfactory responses of the predators to a reconstituted HIPV blend from multiple plant species based on chemical analyses. O. strigicollis significantly preferred volatiles emanating from H. armigera-damaged multiple plant species to volatiles emanating from a single plant species. In all the three plant species, H. armigera-damaged seedlings emitted significantly a greater amount of volatiles as well as a larger number of volatile compounds than an undamaged or a mechanically injured seedling. The predators preferred the reconstituted HIPVs from multiple plant species to the reconstituted HIPVs from a single plant species. Thus, the mixture of HIPVs from multiple plant species enhanced the attractiveness to the predators.  相似文献   

9.
Invasive insect herbivores have the potential to interfere with native multitrophic interactions by affecting the chemical cues emitted by plants and disrupting the attraction of natural enemies mediated by herbivore-induced plant volatiles (HIPVs). In a previous study, we found that the presence of the exotic herbivore Spodoptera littoralis on Brassica rapa plants infested by the native herbivore Pieris brassicae makes these dually-infested plants unattractive to the main parasitoid of P. brassicae, the braconid wasp Cotesia glomerata. Here we show that this interference by S. littoralis is strongly dependent on the relative densities of the two herbivores. Parasitoids were only deterred by dually-infested plants when there were more S. littoralis larvae than P. brassicae larvae on a plant. Furthermore, the blend of HIPVs emitted by dually-infested plants differed the most from HIPVs emitted by Pieris-infested plants when S. littoralis density exceeded P. brassicae density. We further found that associative learning by the parasitoid affected its preferences: attraction to dually-infested plants increased after parasitoids were presented a P. brassicae caterpillar (rewarding experience) in presence of the odor of a dually-infested plant, but not when presented a S. littoralis caterpillar (non-rewarding experience). A non-rewarding experience prior to the bioassays resulted in a general decrease in parasitoid motivation to respond to plant odors. We conclude that herbivore density and associative learning may play an important role in the foraging behavior of natural enemies in communities, and such effects should not be overlooked when investigating the ecological impact of exotic species on native food webs.  相似文献   

10.
The attraction of natural enemies of herbivores by volatile organic compounds as an induced indirect defence has been studied in several plant systems. The evidence for their defensive function originates mainly from laboratory studies with trained parasitoids and predators; the defensive function of these emissions for plants in natural settings has been rarely demonstrated. In native populations and laboratory Y-tube choice experiments with transgenic Nicotiana attenuata plants unable to release particular volatiles, we demonstrate that predatory bugs use terpenoids and green leaf volatiles (GLVs) to locate their prey on herbivore-attacked plants. By attracting predators with volatile signals, this native plant reduces its herbivore load – demonstrating the defensive function of herbivore-induced volatile emissions. However, plants producing GLVs are also damaged more by flea beetles. The implications of these conflicting ecological effects for the evolution of induced volatile emissions and for the development of sustainable agricultural practices are discussed.  相似文献   

11.
A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant’s fitness remains to be determined in most cases, we here argue that withinplant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.Key words: intra-plant signaling, plantplant communication, eavesdropping, systemic wound signals, plant defense, tri-trophic interactionsPlants often emit a unique blend of volatiles in response to herbivore attack. The emission of these herbivore-induced plant volatiles (HIPVs) is an active response to herbivore feeding, producing a blend of volatiles that is distinct from those emitted following mechanical injury alone.1 Their emission can be variable; while some compounds follow a diurnal pattern with increasing amounts during the time of high photosynthesis,2,3 others are emitted primarily at night.4 In some cases, the HIPV blend produced also differs depending on the species of herbivore feeding on the plant.5 This specificity is thought to be due to chemicals in the herbivore’s regurgitant, such as the fatty-acid amino-acid conjugate volicitin, that activate the emission of volatiles in plants.6,7 Furthermore, HIPVs are emitted not only from the site of damage, but also at times from systemically undamaged parts of the plant.8 This and other systemic responses are, however, restricted within a plant such that only parts of the plant that share vascular connections with the damaged tissue receive wound signals and have the potential to respond.9,10The ecological role of HIPVs has been a subject of fascination and the evolutionary advantage gained for plants by emitting HIPVs remains an unresolved topic of discussion. While some HIPV compounds, and some of their precursors, have sufficient volatility that their release is essentially inevitable after synthesis,11 most tend to be tightly regulated. Assuming that HIPV emissions evolved as a result of trophic interactions among plants, herbivores, and natural enemies, there are four general ecological roles that HIPVs may play: (1) a direct negative effect on the herbivore, (2) a signal to alert natural enemies of the herbivore, (3) a warning signal to nearby undamaged plants, and (4) a systemic warning signal within the damaged plant (Fig. 1). The first two potential roles involve the manipulation of animal behavior, while the last two may alter plant “behavior”.Open in a separate windowFigure 1Herbivore-induced plant volatiles (HIPVs) play multiple roles in interactions among plants, herbivores, and natural enemies (possible interactions are depicted by arrows). Some of them benefit the HIPV-emitting plant (Emitter); these positive interactions include repellent effects on herbivores, attraction of natural enemies of herbivores, activation or priming of defenses in unwounded parts within the emitting plant (within-plant signaling), and growth inhibitory effects on neighboring plants (Receiver) through allelopathy. On the other hand, HIPVs may negatively affect the emitting plant by attracting herbivores or natural enemies (e.g., certain parasitoids) that result in increased damage. Finally, neighboring plants may “eavesdrop” from the emitting plant by responding to HIPVs (between-plant signaling). This latter interaction may be negative to the emitter if it is outcompeted by neighbors who receive wound signals, but beneficial to the receiving plant. Drawing by Robert Holdcraft.Scents can have a demonstrable effect on animal behavior. With respect to plant-herbivore interactions, scents can provide information about the status of a plant to herbivores and their natural enemies. For example, HIPVs may repel adults moths searching for oviposition sites,3 which has been interpreted from the perspective of either a plant minimizing damage or, perhaps more realistically, an adult moth searching for an undamaged, high quality resource for her offspring. Conversely, HIPV-emitting plants may increase their chance of being injured if herbivores are attracted to these volatiles.12 The more commonly accepted role of HIPVs in manipulating animal behavior is to attract natural enemies of the herbivores. This tri-trophic “cry for help”13 has a potential evolutionary benefit for both the plant emitting the volatiles and the natural enemies responding to this emission.1416 Although this idea makes sense in an evolutionary perspective, only a few studies have documented the occurrence of this phenomenon in natural systems.17 Indeed, the effectiveness of a cry for help depends on the presence of a helper and, equally importantly, the ability of the helper to increase plant fitness. In the case of predator attraction, the herbivore may be removed from the plant and consumed, thereby reducing damage for the emitting plant.18 However, insect herbivores infected by parasitoids, which also use HIPV cues to locate hosts,19 may also consume less plant material20 but may also in some cases consume more plant material than unparasitized insect herbivores.21 Since there is currently no evidence that plants can modify HIPV blends to attract selectively predators versus parasitoids, an answered cry for help may not reliably decrease the total amount of damage to an emitting plant. Thus, the fact that natural enemies respond to HIPVs does not imply that these volatiles evolved for this purpose or that there is an adaptive advantage for a plant to use HIPVs to attract natural enemies. Rather, natural enemies of insect herbivores may have learned to co-opt the HIPV signal emitted by plants and, by doing so, increased their fitness irrespective of the ultimate fitness outcome to the plant.Though more controversial, scents can also have an effect on plant behavior.22 Early work suggested that HIPVs from wounded willows,23 poplars24 and sugar maples24 could trigger defense responses from other neighboring conspecifics. More recent studies have shown that this signaling can occur between different species of plants.25 While these results are intriguing, they appear to have little adaptive function from the perspective of an emitting plant, which could be facilitating the fitness of potential resource competitors. Further, unless the individual within the same plant species shared some degree of kinship,26 an emitting plant would also be at a disadvantage by providing an HIPV wound signal to a conspecific that, in theory, occupies the same competitive niche space. On the other hand, unwounded conspecific should benefit from being able to ‘eavesdrop’ by detecting HIPVs from wounded plants as they share the same herbivore complex and thus are vulnerable to attack. Moreover, from a heterospecific receiver’s perspective, the benefits of eavesdropping can be confounded by the potential of mounting defenses against a signal generated by incompatible herbivores feeding on a different plant species.27 So, eavesdropping may be adaptive for a receiving plant if it realizes increased fitness relative to a conspecific that did not receive the signal. The emitting plant derives no apparent adaptive benefit of using HIPVs to warn neighboring plants. However, the emitting plant may benefit if their HIPVs have inhibitory allelopathic activity on neighboring plants.28Our recent work1 highlighted another scenario by which an HIPV-emitting plant would derive a direct benefit from the emissions: when HIPVs act as systemic wound signals within damaged plants. We showed that branches of blueberry shrubs lack effective vascular connections and thus cannot transmit wound signals among branches via the vasculature. To compensate, HIPVs can be transmitted among branches and, in so doing, overcome the vascular constraints of the branching life history strategy. Exposure to HIPVs increased levels of defensive signaling hormones in undamaged branches, changed their defensive chemical status, and made them more resistant to herbivores.1 This idea that HIPVs may function in intra-plant communication to activate or prime defenses in other parts of the emitting plant against future attack was first suggested separately by Farmer29 and Orians.9 The hypothesis was first tested with mechanically clipped wild sagebrush,30 and it was further tested with insect herbivores of wild lima bean31 and hybrid poplar.32 Under this scenario, the emitting plant derives a direct benefit from the HIPVs, providing an unambiguous fitness advantage.So, what is the most beneficial factor to a plant for emitting volatiles in response to herbivore feeding? In terms of maximizing the potential benefit and minimizing the potential risk to the emitting plant, the function of HIPVs in mediating systemic wound signaling clearly provides the greatest potential adaptive advantage. Thus, we propose that the primary adaptive benefit for the evolution of HIPVs is to signal and protect unwounded parts of the attacked plant with high risk of infestation against herbivores. Later, these volatiles provided cues that led to adaptive fitness advantages for neighboring plants and natural enemies of herbivores, which may or may not benefit the HIPV-emitting plant. Indeed, ecologically adaptive advantages have emerged and contribute to a diverse, multi-functional chemical ecology mediated by HIPVs.  相似文献   

12.
In response to feeding by phytophagous arthropods, plants emit volatile chemicals. This is shown to be an active physiological response of the plant and the released chemicals are therefore called herbivore-induced plant volatiles (HIPV). One of the supposed functions of HIPV for the plant is to attract carnivorous natural enemies of herbivores. Depending on which plant and herbivore species interact, blends of HIPV show qualitative and quantitative variation. Hence, one may ask whether this allows the natural enemies to discriminate between volatiles from plants infested by herbivore species that are either suitable or unsuitable as a food source for the natural enemy. Another question is whether natural enemies can also recognise HIPV when two or more herbivore species that differ in suitability as a food source simultaneously attack the same plant species. By reviewing the literature we show that arthropod predators and parasitoids can tell different HIPV blends apart in several cases of single plant–single herbivore systems and even in single plant–multiple herbivore systems. Yet, there are also cases where predators and parasitoids do not discriminate or discriminate only after having learned the association between HIPV and herbivores that are either suitable or non-suitable as a source of food. In this case, suitable herbivores may profit from colonising plants that are already infested by another non-suitable herbivore. The resulting temporal or partial refuge may have important population dynamical consequences, as such refuges have been shown to stabilise otherwise unstable predator–prey models of the Lotka-Volterra or Nicholson-Bailey type.  相似文献   

13.
  1. Upon herbivory, plants emit specific herbivore-induced plant volatiles (HIPVs) that can attract natural enemies of the herbivore thus serving as indirect plant resistance. Not only insect herbivores, but microorganisms may also affect HIPV emission before or after plant colonisation, which in turn can affect behaviour of natural enemies of the herbivore. Yet, it remains elusive whether volatiles from microorganisms influence HIPV emission and indirect plant resistance.
  2. In this study, we investigated whether exposure of Brassica rapa roots to volatiles from soil-borne fungi influence HIPV emission and the recruitment of natural enemies of Pieris brassicae larvae.
  3. Using a two-compartment pot system, we performed greenhouse and common-garden experiments, and we profiled plant HIPV emission.
  4. We found that exposure of plant roots to fungal volatiles did not affect the number of P. brassicae larvae recollected from the plants, suggesting a neutral effect of the fungal volatiles on natural predation. Likewise, in a greenhouse, similar numbers of larvae were parasitised by Cotesia glomerata wasps on control plants as on fungal volatile-exposed plants. Additionally, chemical analysis of HIPV profiles revealed no qualitative and quantitative differences between control plants and fungal volatile-exposed plants that were both infested with P. brassicae larvae.
  5. Together, our data indicate that root exposure to fungal volatiles did not affect indirect plant resistance to an insect herbivore. These findings provide new insight into the influence of indirect plant resistance by fungal volatiles that are discussed together with the effects of fungal volatiles on direct plant resistance.
  相似文献   

14.
虫害诱导的植物挥发物:基本特性、生态学功能及释放机制   总被引:79,自引:10,他引:69  
娄永根  程家安 《生态学报》2000,20(6):1097-1106
植物在遭受植食性昆虫攻击时,能通过释放挥发物调节植物、植食性昆虫及其天敌三者间的相互关系,并由此而防御植食性昆虫。主要就虫害诱导的植物挥发物的基本特性、生态学功能及其释放机制进行了系统性综述,并提出了今后的研究方向。  相似文献   

15.
Plants respond to herbivore attack by emitting a blend of volatiles called herbivore-induced plant volatiles (HIPVs), which attract arthropod natural enemies. Under natural conditions and multiple cropping agriculture systems, natural enemies are thought to encounter a mixture of HIPVs emanating from multiple plant species. The effect of such a mixture of HIPVs on the responses of natural enemies under field conditions has not been explored. Our study assessed whether a mixture of HIPVs from multiple host plant species influenced predator responses in field-cage conditions. We investigated (1) foraging behaviors of a predatory bug, Orius strigicollis, on cotton bollworm (Helicoverpa armigera) larvae-infested multiple host plant species, and (2) the attractiveness of a mixture of reconstituted HIPVs from multiple plant species to O. strigicollis in outdoor cages. Significantly, greater numbers of predators were attracted to H. armigera-infested multiple plant species. The predators exterminated significantly greater numbers of H. armigera larvae with the multiple versus single plant species treatments. Significantly, greater numbers of O. strigicollis were captured on traps baited with the mixture of reconstituted HIPVs from multiple versus single plant species. The enhanced attractiveness of a mixture of HIPVs from multiple plant species to O. strigicollis might be the result of an additive effect of HIPVs from the three plant species when combined in a mixture.  相似文献   

16.
Herbivore-induced plant volatiles provide foraging cues for herbivores and for herbivores’ natural enemies. Aphids induce plant volatile emissions and also utilize plant-derived olfactory volatile cues, but the chemical ecology of aphids and other phloem-feeding insects is less extensively documented than that of chewing insects. Here, we characterize the volatile cues emitted by turnip plants (Brassica rapa) under attack by an aphid (Myzus persicae) or by the chewing lepidopteran larva Heliothis virescens. We also tested the behavioral responses of M. persicae individuals to the odors of undamaged and herbivore-damaged plants presented singly or in combination, as well as to the odor of crushed conspecifics (simulating predation). Gas chromatographic analysis of the volatile blend of infested turnips revealed distinct profiles for both aphid- and caterpillar-induced plants, with induced compounds including green-leaf alcohols, esters, and isothiocyanates. In behavioral trials, aphids exhibited increased activity in the presence of plant odors and positive attraction to undamaged turnip plants. However, aphids exhibited a strong preference for the odors of healthy versus plants subjected to herbivore damage, and neither aphid- or caterpillar-damaged plants were attractive compared to clean-air controls. Reduced aphid attraction to herbivore-infested plants may be mediated by changes in the volatile blend constituent composition, including large amounts of isothiocyanates and green-leaf volatiles or, in the case of aphid-infested plants, of the aphid alarm pheromone, (E)-β-farnesene.  相似文献   

17.
Natural enemies respond to herbivore-induced plant volatiles (HIPVs), but an often overlooked aspect is that there may be genotypic variation in these 'indirect' plant defence traits within plant species. We found that egg deposition by stemborer moths (Chilo partellus) on maize landrace varieties caused emission of HIPVs that attract parasitic wasps. Notably, however, the oviposition-induced release of parasitoid attractants was completely absent in commercial hybrid maize varieties. In the landraces, not only were egg parasitoids (Trichogramma bournieri) attracted but also larval parasitoids (Cotesia sesamiae). This implies a sophisticated defence strategy whereby parasitoids are recruited in anticipation of egg hatching. The effect was systemic and caused by an elicitor, which could be extracted from egg materials associated with attachment to leaves. Our findings suggest that indirect plant defence traits may have become lost during crop breeding and could be valuable in new resistance breeding for sustainable agriculture.  相似文献   

18.
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore‐induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up‐regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.  相似文献   

19.
虫害诱导挥发物的生态调控功能   总被引:2,自引:0,他引:2  
虫害诱导挥发物(herbivore-induced plant volatiles, HIPVs)是植物受害虫胁迫后释放的挥发性物质,是植物与周围环境进行信息交流的媒介。环境中的天敌、害虫和植物通过感知HIPVs所携带的信息,对各自的行为或生理生化反应做出相应的调整。介绍了挥发物的种类及主要的生物合成途径,概括了影响天敌依据HIPVs搜寻寄主和猎物的主要因素。综述了这类挥发性物质对植食性昆虫寄主选择或产卵行为的影响,介绍了植物地上部分和地下部分受害后对彼此间接防御的影响,讨论了多种害虫加害同种植物后对天敌搜寻猎物或寄主行为的影响。另外,作为损伤信号,HIPVs还能诱导同株植物未受害部位和邻近植株的防御反应。最后,对HIPVs在害虫防治中的应用现状及前景作了介绍和讨论。  相似文献   

20.
Emission of herbivore-induced plant volatiles (HIPVs) can differ according to the type of herbivory and the plant development stage, ultimately affecting recruitment of the natural enemy. Little is known about plant defenses induced at the flowering stage by phloem-feeding insects. We investigated the olfactory preference of Encarsia desantisi parasitoids and the chemical profile of flowering melon plants induced or not by the phloem-feeding of Bemisia tabaci whiteflies. In addition, we tested whether the parasitoids were attracted to synthetic defensive HIPVs, which mimicked whitefly-infested flowering melons. The parasitoids recognized volatiles from undamaged melons but preferred the scent of host-infested melons in olfactometry assays. Amounts of most individual volatiles did not differ between plant treatments; however, only whitefly-induced melons released methyl salicylate and tetradecane, compounds known to attract parasitoids. Interestingly, grouping volatiles by chemical classes revealed that whitefly-infested melon released larger amounts of monoterpenes and smaller amounts of benzenoids than undamaged melons, which might underlying the parasitoid attraction and indicate a possible trade-off between defensive and reproductive defenses at the melon flowering stage. Additionally, E. desantisi preferred the mix of synthetic and defensive HIPVs over hexane (control), opening a new avenue for further investigations in using olfactory lures for B. tabaci biological control. This study is the first report of induced defenses in melon plants and their mediation in a tritrophic interaction, as well as the first record of E. desantisi behavioral preference for HIPVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号