首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Double inoculations of sugar beet with larvae of Meloidogyne hapla resulted in a higher galling incidence in only one treatment than did a single inoculation using the same number of larvae. Double inoculations with larvae of Heterodera schachtii, however, resulted in three- to five-fold more cysts in most cases than did single inoculations using the same number of larvae. In general, plants died more quickly after double inoculations than after single inoculations of the same total number of either nematode. Ratios of total soluble carbohydrates to reducing carbohydrates were lower in multiple inoculated treatments than in other treatments. Plants infected with M. hapla had lower quantities of B, K, and P in leaf tissue than noninoculated plants, but no differences were correlated with type of inoculation. Plants inoculated with H. schachtii had lower quantities of B, K, and Mg than noninoculated plants. Also, quantities of Mn, Cu, and Zn were much lower in plants inoculated twice with H. schachtii larvae than in plants inoculated with the same total number of larvae in a single dose.  相似文献   

2.
Green cloverworm larvae. Plathypena scabra, were inoculated with Nomuraea rileyi by “tumbling” larvae in a vial of conidia. The ontogeny of the pathogen was followed by using standard histological techniques. N. rileyi conidia germinated on green cloverworm integument within 12 hr after inoculation. Germ tubes penetrated larval cuticle 36 hr after inoculation, then grew parallel to endocuticular laminae. After hyphal penetration of the epidermis ca. 4.5 days after inoculation, hyphal bodies were produced and were transported throughout the hemocoel. Hyphal bodies and hemocytes cohabited the hemocoel, but gut epithelial and muscle tissues were not invaded by Day 5. Hemocytes lysed and mycelia completely ramified throughout all larval tissues by 7 days after inoculation. Death of larvae was followed by conidiogenesis ca. 7.5 days after inoculation.  相似文献   

3.
Aseptically reared larvae of the alfalfa leafcutting bee, Megachile rotundata, are susceptible to infection by spores but not mycelial cultures of Ascosphaera aggregata when introduced per os. The symptoms and signs of chalkbrood vary, depending upon host age at inoculation. Larvae inoculated early in life did not undergo the internal color changes after death that characterized larvae inoculated later. A longer time to death was also evident among larvae inoculated at an early age. Changes in the aerobic state of the host gut at the molt to the fourth instar may account for the difference in average time to death.  相似文献   

4.
The white grub species Phyllophaga polyphylla and Anomala cincta (Coleoptera: Melolonthidae) are economically important species that affect many crops in Mexico. A series of experiments to study the pathogenic interaction between isolates of Beauveria bassiana and Metarhizium anisopliae and these two insect species were undertaken. First, the susceptibility of third instar P. polyphylla larvae to each of seven isolates representing both species of fungus was evaluated by dipping the insects in 1?×?108 conidia?ml?1 suspensions. A second study examined the differences in the susceptibility of P. polyphylla and A. cincta larvae to two selected isolates for each of the fungal species. Finally, the susceptibility of A. cincta larvae to one M. anisopliae isolate when incubated in soil collected from four different sites was assessed. No significant differences in proportion of infection of P. polyphylla larvae were observed amongst the fungal isolates tested and mortality due to fungal infection was never greater than 20% after 36?days incubation. Anomala cincta larvae were more susceptible than P. polyphylla larvae, with greater than 90% infection when inoculated with isolates of M. anisopliae whereas mortalities of only 20% where achieved against P. polyphylla larvae. The soil type in which A. cincta were incubated following inoculation with M. anisopliae affected their susceptibility to infection. The results demonstrated that there is a complex interaction amongst entomopathogenic fungi, white grub larvae and soil properties, and points to the need of further investigation of this system in order to optimize the efficacy of entomopathogenic fungi against these insect species.  相似文献   

5.
Meloidogyne hapla-resistant plants grown from cuttings and inoculated with M. hapla larvae were free of galls. However, 35 to 48% of the seedling intercross progeny of resistant genotypes that were inoculated in the germinated seed stage were galled. There was an inverse relationship between the age of plants grown from seed and the percentage of plants galled by M. hapla; the older the plants at inoculation, the greater the percentage of gall-free plants. The per cent of galled plants was significantly reduced when galled roots were removed and plants reinoculated. Reproduction of M. hapla on galled progeny of resistant plants was significantly less than that on susceptible plants. There were no differences in nematode reproduction on galled progeny of resistant plants, regardless of age at time of inoculation. An in,ease in inoculum levels from 100 to 10,000 M. hapla larvae did not affect resistance or susceptility. There was a direct correlation between galling of inoculated seedlings of resistant progeny and temperature; inoculated 8-week-old cuttings of resistant plants were galled only at 32 C.  相似文献   

6.
Three biopesticide parameters were evaluated for a fast-killing isolate (3AP2) and a wild-type isolate (Sf3) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). Both isolates were evaluated for virus production using in vivo methods, for speed of kill based on bioassay of applications to glasshouse-grown and field-grown plants, and for residual insecticidal activity of unformulated virus and an encapsulating formulation to provide UV protection. Two inoculation rates comparing relative in vivo production of the isolates demonstrated 3AP2 inoculated larvae were significantly smaller than Sf3 inoculated larvae at death. At the lower inoculation rate, Sf3 inoculated larvae produced approximately twofold more occlusion bodies as the 3AP2 inoculated larvae. A model system of applications to cabbage plants and a bioassay to observe mortality of neonate S. frugiperda (J.E. Smith) after feeding on samples of treated leaves was used to evaluate speed of kill and residual insecticidal activity. The LT(50) for the 3AP2 isolate was at least 30 h less than the LT(50) for the Sf3 isolate when applied to either glasshouse-grown or field-grown plants. The spray-dried lignin encapsulating formulation provided similar benefits to both virus isolates when exposed to simulated sunlight in the laboratory and to natural sunlight in the field. For treatment applications to field grown cabbage in June, the half-life for efficacy of unformulated virus was <7.5 h compared with a half-life of >26.7 h for encapsulated virus. These results demonstrate that improved technologies can be combined to address characteristics which otherwise can limit the commercial potential of microbial-based biological insecticides.  相似文献   

7.
A synergistic factor (SF), which is present in the capsule matrix protein of a granulosis virus of the armyworm, Pseudaletia unipuncta, enhances baculovirus infection in armyworm larvae. The site of action of the SF was investigated. The oral inoculation of SF did not enhance the infectious hemolymph virions which had been inoculated into the hemocoel. The SF also did not enhance the infection of purified enveloped virions when both virus and SF were inoculated into the hemocoel, but enhancement occurred when they were inoculated orally. Thus, the activity of the SF was confined to the midgut lumen. Observations with ferritin-conjugated antibody indicated that the site of action of SF was the cell membrane of the microvillus. There were more ferritin particles attached to midgut cell membranes of larvae inoculated orally with SF than to those of control larvae inoculated with buffer.  相似文献   

8.
Experiments were conducted on the fate of irradiated infective larvae of Dirofilaria immitis in dogs, and on the effect of these infections on a challenge dose of nonirradiated larvae administered at a later date. Six dogs were inoculated with 200 to 296 irradiated larvae; in no case was a patent infection established. No living worm was recovered beyond 66 days. Eight dogs inoculated with 200 to 2401 irradiated larvae over varying periods of time were exposed 57 to 190 days after the final inoculation of irradiated larvae, to a challenge infection of 200 to 250 nonirradiated (normal) larvae. The results showed that the number of worms which developed to maturity in these dogs was sharply reduced compared to that in the 5 controls (dogs inoculated with normal larvae only). The most striking effect was seen in “vaccinated” dogs which were challenged 3 months or more after the final administration of irradiated larvae.  相似文献   

9.
《Journal of Asia》1999,2(2):93-96
Application of Microcoleus vaginatus, a blue-green alga (Cyanobacterium) at different levels along with Meloidogyne incognita, second stage larvae, in the rhizosphere of tomato plants; showed that the plant growth as well as yield of tomato were increased and gall formations and nematode populations decreased with the increase in inoculum level of M. vaginatus. An inoculum level of 20 ml endospores suspension of M. vaginatus (2.4 × 106 endospores per ml) per plant was optimum to reduce nematode attack with a population density of 1000 larvae per kg soil. Plant growth and yield of fruits were greatly suppressed and gall formations on roots, and nematode populations in soil were increased when M. incognita larvae added five days prior to M. vaginatus inoculation. On the other hand, when M. vaginatus inoculated ten days before nematode inoculation, suppressive effect of M. incognta on plants was reduced and their population density as well as gall formations were also decreased significantly. The efficacy of simultaneous inoculation of both nematode and M. vaginatus was lied in between two treatments discussed above.  相似文献   

10.
Wilt-susceptible cultivar ''Rowden'' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks.  相似文献   

11.
The behavior of two isolates of Pratylenchus penetrans on six potato clones was assessed to test the hypothesis that these nematode isolates from New York were different. Four potato cultivars (Superior, Russet Burbank, Butte, and Hudson) and two breeding lines (NY85 and L118-2) were inoculated with nematode isolates designated Cornell (CR) and Long Island (LI). Population increase and egression of nematodes from roots were used to distinguish resistance and susceptibility of the potato clones. Based on numbers of eggs, juveniles, and adults in their roots 30 days after inoculation, potato clones Butte, Hudson, and L118-2 were designated resistant to the CR isolate and susceptible to the LI isolate. More eggs were found in the roots of all plants inoculated with the LI isolate than with the CR isolate. The clones NY85 and L118-2 were inoculated with the CR and LI isolates in a 2 x 2 factorial experiment to assess differences in nematode egression. Egression was measured, beginning 3 days after inoculation, for 12 days. The rates of egression were similar for the four treatments and fit linear regression models, but differences were detected in numbers of egressed nematodes. More nematodes of the CR isolate than the LI isolate egressed from L118-2. Differences in egression of females was particularly significant and can be used as an alternative or supplement to reproduction tests to assess resistance in potato to P. penetrans and to distinguish variation in virulence.  相似文献   

12.
Phyllophaga polyphylla (Coleoptera: Scarabaeidae) is an important pest of maize and other crops in Mexico. Previous reports showed that this pest was highly resistant to fungal and nematode infection when each pathogen was inoculated separately; in this study, we evaluated whether dual inoculation of fungi and nematodes, in all possible pair-wise combinations and orders of inoculation and including an evaluation of a time separation of 73 hours between each pathogen's inoculation, would increase mortality in P. polyphylla larvae. The pathogens were two isolates of Heterorhabditis bacteriophora applied at a concentration of 50 infective juveniles (IJ) mL–1, an isolate of Beauveria pseudobassiana and of Metarhizium pingshaense both applied at a concentration of 1 × 108 conidia mL–1. In the first experiment, the combined mortality when pathogens were dual-inoculated (13%), although significantly higher than single-inoculated treatments (8%), demonstrated that antagonistic interactions were ongoing between the pathogens, as confirmed by the χ2-test. In a separate experiment, using only the B. pseudobassiana isolate (1 × 108 conidia mL–1) and one isolate of H. bacteriophora (100 IJ mL–1), we studied the effect of different order of inoculations but included a two-week separation between inoculation of each pathogen. Mortalities obtained were similar to the previous experiment; all interactions resulted in antagonistic effects, except when the fungal pathogen was inoculated first, which resulted in an additive interaction. Understanding the mechanisms for the interaction requires further study but, for practical biological control, we suggest that more virulent fungal and nematode isolates are necessary to achieve control of P. polyphylla.  相似文献   

13.
Siebert A. E. Jr., Good A. H. & Simmons J. E. 1978. Kinetics of primary and secondary infections with Taenia crassiceps metacestodes (Zeder, 1800) Rudolphi, 1810 (Cestoda: Cyclophyllidea). International journal for Parasitology8: 39–43. When three T. crassiceps metacestodes were inoculated intraperitoneally in mice as a primary infection, approximately 50% of the larvae recovered during the first 4 weeks after inoculation were found to be dead, while in mice primed by previous subcutaneous inoculation, about 85% of the larvae died. Larvae which survived the first 4 weeks following primary intraperitoneal inoculation reproduced asexually by exogenous budding and produced viable infections within the host mice. But larvae in secondary infections were encapsulated by host granulomata, failed to reproduce asexually, and did not produce viable infections. In mice given intraperitoneal inoculations of seven, ten and twenty metacestodes, fewer larvae were killed and little encapsulation response was noted, though host cells were common at the budding region of the larvae. Such a biphasic host-response to the infection has not previously been reported for larval cestode infections, and the reduction in host response associated with increased worm burdens may indicate possible depression of the host immune system.  相似文献   

14.
The influence of various factors on reproduction of concomitant Meloidogyne incognita (Mi) and Rotylenchulus reniformis (Rr) on sweet potato were studied in the greenhouse. Reproduction of Rr was reduced by Mi at all inoculum levels and experiment durations used, while Mi reproduction was not inhibited. Both species failed to affect each other when inoculated simultaneously onto root systems developed in separate pots from different nodes of the same plant. Reproduction of each species was not significantly greater when inoculation of the second species was delayed 1-2 weeks compared to simultaneous inoculation. After shoot excision, Rr increased in the soil but Mi decreased. Fibrous root weights of plants inoculated with Rr + Mi in some tests were higher than those inoculated with Mi alone, indicating an early suppression of Mi and/or root stintulation by Rr. Drought stress delayed Rr egg hatching and movement of larvae into the soil, but had little effect on Mi reproduction.  相似文献   

15.
释放花绒寄甲防治天牛已成为重要手段,而繁殖花绒寄甲时,接种花绒寄甲幼虫到大麦虫蛹体时,控制合适的接种量是提高花绒寄甲繁殖数量和质量的关键技术。本研究通过在替代寄主上人工接种不同数量的花绒寄甲幼虫,观察其发育情况及其子代数量、质量等指标,明确最佳接种量。结果表明:随着接种量的增加,花绒寄甲幼虫历期和蛹历期明显缩短,其中接种4头/个和6头/个,幼虫历期为13 d,蛹历期为33 d,而接种14头/个和16头/个时,幼虫历期短于12 d,蛹历期明显缩短为28~29 d。花绒寄甲结茧数随接种量增加而增加,接种数为16头/个时,结茧数最多,接近7个。花绒寄甲结茧率随着接种量增多而降低,4头/个时,结茧率最高为72.3%。接种量对花绒寄甲子代个体数量和大小均有显著影响,其中接种8头/个时,羽化数平均为4.3头,显著高于接种4头/个(羽化数平均为2.8头),明显低于接种16头/个(羽化数平均为6.9头)。接种量为4头/个和6头/个时,子代成虫个体最大,单头重平均每头可达0.035 g,接种量为8头/个时,成虫单头重平均每头0.032 g左右,接种量达到16头/个时,单头重最轻,为0.023 g。对花绒寄甲羽化率无显著影响,7个处理下子代羽化率均较高,平均在94.4%~100%。接种量越少,更利于花绒寄甲的生长发育,当接种量为4头/个时,花绒寄甲成虫发育最好,其子代个体最大,但子代数较少。因此,利用大麦虫蛹繁育花绒寄甲种虫时,最佳接种量为4头/个,而需要规模化繁育花绒寄甲作为天敌使用时,综合考虑子代数量和质量以及经济成本,最佳接种量为8头/个。  相似文献   

16.
The sex ratio of the Arkansas 1 isolate of Heterodera glycines was determined in experiments in which ''Lee'' soybean was inoculated with either one or two larvae. A 3:1 male to female sex ratio was established for this isolate under the test conditions used. No influence of one nematode on the penetration and development to adult of another nematode in the same root was detected in double larval inoculations.  相似文献   

17.
The larvae of scarab beetles, known as “white grubs” and belonging to the genera Phyllophaga and Anomala (Coleoptera: Scarabaeidae), are regarded as soil-dwelling pests in Mexico. During a survey conducted to find pathogenic bacteria with the potential to control scarab larvae, a native Serratia sp. (strain Mor4.1) was isolated from a dead third-instar Phyllophaga blanchardi larva collected from a cornfield in Tres Marías, Morelos, Mexico. Oral bioassays using healthy P. blanchardi larvae fed with the Mor4.1 isolate showed that this strain was able to cause an antifeeding effect and a significant loss of weight. Mortality was observed for P. blanchardi, P. trichodes, and P. obsoleta in a multidose experiment. The Mor4.1 isolate also caused 100% mortality 24 h after intracoelomic inoculation of the larvae of P. blanchardi, P. ravida, Anomala donovani and the lepidopteran insect Manduca sexta. Oral and injection bioassays were performed with concentrated culture broths of the Mor4.1 isolate to search for disease symptoms and mortality caused by extracellular proteins. The results have shown that Mor4.1 broths produce significant antifeeding effects and mortality. Mor4.1 broths treated with proteinase K lost the ability to cause disease symptoms and mortality, in both the oral and the injection bioassays, suggesting the involvement of toxic proteins in the disease. The Mor4.1 isolate was identified as a putative Serratia entomophila Mor4.1 strain based on numerical taxonomy and phylogenetic analyses done with the 16S rRNA gene sequence. The potential of S. entomophila Mor4.1 and its toxins to be used in an integrated pest management program is discussed.  相似文献   

18.
《Fungal biology》2022,126(10):648-657
We evaluated the virulence of Beauveria bassiana and Metarhizium isolates from soil collected across different vegetation types in Queensland, against chlorantraniliprole-resistant and insecticide-susceptible diamondback moth (DBM) larvae. Host insecticide resistance status had no effect on susceptibility to the pathogens when conidia were topically applied to larvae in the laboratory, and one B. bassiana isolate was significantly more virulent to larvae than the others (seven days after inoculation). The influence of temperature (15, 20, 25 or 30 °C): (i) at the point of host inoculation with conidia and (ii) when the pathogens had already initiated infection and were proliferating in the host haemocoel, was determined experimentally for its influence on virulence, disease progression, and sporulation. Temperature at inoculation had a greater effect on host insect mortality than it did when the fungus was already proliferating in the host haemocoel. The rearing temperature of hosts prior to inoculation had a greater effect on host susceptibility to disease than starvation of the larvae at the time of inoculation. Our results also show that each fungal isolate has its own temperature relations and that these can vary considerably across isolates, and at different points in the pathogen life cycle (germination and cuticular penetration versus growth in the host haemocoel). Temperature also had an idiosyncratic effect, across isolates and across the variables typically used to assess the potential of fungal entomopathogens as biological control agents (time to death, mortality and sporulation rates). This study demonstrates that in addition to pathogenicity and virulence, the temperature relationships of each fungal isolate when infecting insects needs to be taken into account if we are to understand their ecology and use them effectively in pest management.  相似文献   

19.
《Journal of Asia》2022,25(2):101894
Helicoverpa armigera nucleopolyhedrovirus (HearNPV) is highly virulent against cotton bollworm, and its combination with peritrophic membrane affecting chemicals, especially benzoylphenylurea compounds, can increase the relative speed of kill, leading to early and timely pest control. The biological activity of three HearNPV isolates (IR03, IR18, and IR20) was primarily evaluated on the second instar larvae of H. armigera. The highly virulent isolate (IR18, LC50: 8.43 × 103 OB/ml) and four benzoylphenylurea compounds (diflubenzuron, teflubenzuron, flufenoxuron, and lufenuron) were assessed on the pest larvae according to four per orally diet inoculation schedules. The highest mortality values were obtained when the virus was inoculated on the second (schedule 1) and third (schedule 2) days after flufenoxuron contamination with 98.67% and 97.30%, respectively, followed by teflubenzuron. All the benzoylphenylureas showed the highest mortalities using these two schedules. Flufenoxuron had a higher relative efficiency percent than the other compounds in all the schedules. The second schedule yielded the lowest LT50 value using flufenoxuron with the highest relative speed of kill (38.40%), followed by the first schedule (30.02%). The second schedule can be relatively considered the most appropriate method for the combined use of benzoylphenylurea and HearNPV.  相似文献   

20.
To determine the effect of sublethal doses of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV) on the metabolic rate of H. armigera, the respiration rates of third instar H. armigera larvae inoculated with sublethal doses of HearSNPV were evaluated. Respiration rates, measured as the rate of CO2 production (VCO2), were recorded daily using closed-system respirometry. By 4 days post-inoculation (dpi), the metabolic rates of LD25 or LD75 survivors were significantly higher than that of uninoculated controls. When dose data were pooled, the VCO2 values of larvae that survived inoculation (0.0288 ml h−1), the uninoculated controls (0.0250 ml h−1), and the larvae that did not survive inoculation (0.0199 ml h−1) differed significantly from one another. At 4 dpi, the VCO2 of the uninoculated controls were significantly lower than the VCO2 of inoculation survivors, but significantly higher than the VCO2 of inoculation non-survivors. Inoculation survivors may have had high metabolic rates due to a combination of viral replication, organ damage, and an energy-intensive induced cellular immune response. The high 4 dpi metabolic rate of inoculation survivors may reflect an effective immune response and may be seen as the metabolic signature of larvae that are in the process of surviving inoculation with HearSNPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号